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7 Data Sources and Accounting 
for Uncertainty
Albert Wertheimer
PhD, MBA, Professor, Nova Southeastern University Ft. Lauderdale, FL, USA

7.1 Data Sources

In a cost‑effectiveness analysis, two kinds of data are needed: clinical data 
values (i.e., probability values for the chance nodes in the decision tree, in‑
cidence of adverse events‑ or pathology‑related events, associated utility 
values) and data to account for the healthcare resources used and the mon‑
etary costs associated with the consequences (branches) stemming from each 
chance node. Suppose that a healthcare professional wishes to know the an‑
swer to a certain question, such as: Is drug X an effective treatment for dis‑
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Abstract

To perform cost‑effectiveness and cost‑utility analyses, data may be retrieved 
from Delphi panels, the literature, or conducting ad hoc studies.
Studies from the literature may be observational or experimental. Data coming 
from several studies may be combined in meta‑analyses, systematic reviews, or 
network meta‑analyses. Further data may come from administrative databases. 
Data are elaborated by means of the most suitable techniques, such as classical 
statistics or Bayesian approach.
Several types and subtypes of biases may arise during and after the conduct of a 
study, thus the most suitable countermeasures must be undertaken to reduce errors, 
e.g., randomization, case matching, and propensity scoring. In pharmacoeconomics 
studies, the weight of each variable is tested by means of simple sensitivity analysis, 
probabilistic analysis, analysis of extremes, or threshold analysis.
Finally, several guidelines may be of help in assessing the reliability of the 
published studies that could be used as data sources.
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ease Y in population Z? There are three ways to find an answer: The first is 
to ask someone; the second is to look the answer up in the literature; and the 
third is to perform a study designed to find out the answer. All three ways of 
finding answers are used in pharmacoeconomics.

The first method—asking someone who might know—is institutionalized in 
the form of the augustly named “Delphi Panel”, which is a panel of experts 
convened to provide their collective opinion. The Delphi Panel is named after 
the oracle of Delphi, famed in classical Greece for its cryptic pronouncements 
that could be interpreted as prophetic only in retrospect. Unless supported 
by an explicit marshalling of factual data and analysis, mere opinion does not 
qualify as evidence‑based medicine. The second and the third methods are 
discussed in this Chapter.

A Cost‑Utility Analysis (CUA) is performed in the same way as a cost‑effectiveness 
analysis except that the unit of effectiveness is Quality‑Adjusted Life‑Years (QALYs) 
or another measure of utility. This analysis is better described in Chapter 3.

Clinical Epidemiology

Pharmacoeconomic studies usually require data both on costs and effec‑
tiveness. The effectiveness data are taken from epidemiological or medical 
research studies. The design of every medical research study can be classified 
according to a few fundamental mutually exclusive dichotomies (Table 7.1).

First, a study may be either observational or experimental. A clinical trial 
is an experiment—a test of an intervention—in which the investigator inter‑
feres with the normal course of events, usually by providing certain people 
with a treatment they would not otherwise have received. In an observa‑
tional study, the investigator merely observes events and does not interfere 
with them. There cannot be, therefore, an “observational trial”. Second, in 
respect to the time in which the investigator decides to perform the study, 
the events being studied may have already occurred, in which case the study 
is a retrospective one, or may not yet have occurred, in which case they will 

Study design

Investigator 
involvement

Observational Experimental

Time perspective Prospective Retrospective Prospective
Time sampling Longitudinal or 

cross‑sectional
Longitudinal or 
cross‑sectional

Longitudinal

Table 7.1. Concepts in clinical study design.
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be studied as they happen, i.e., prospectively. Third, the observations may 
refer to a point in time, and are called “cross‑sectional”, or to two or more 
points in time, and are then called “longitudinal”. An observational study 
may be longitudinal or cross‑sectional. In the first case, it may be either pro‑
spective or retrospective, whilst cross‑sectional studies are neither prospec‑
tive nor retrospective, because exposure and outcome are measured at the 
same time (they are compared to snapshots [Grimes, 2002]). An experimental 
study, however, can only be longitudinal because, however brief in duration 
it might be, it is an analysis of cause and effect—the “cause” being the inter‑
vention which is tested, and the “effect” being the clinical outcome that is 
observed, which cannot, by definition, occur at the same point in time. Thus, 
a clinical trial is a prospective, longitudinal, experimental study.

Literature Analysis

The U.S. state and federal governments make available basic demographic 
information that is often needed in pharmacoeconomic analyses—e.g., the 
death rate from all causes by age and gender, death rates by cause, etc. The 
Census Bureau publishes past and projected population demographic data. 
The National Center for Health Statistics also collects and makes available 
ongoing national survey data addressing a variety of subjects. These include 
the National Health Insurance Interview Survey, the National Health and Nu‑
trition Examination Survey, and the National Health Care Surveys.

Much of the information required in a pharmacoeconomic analysis is pres‑
ent in studies published in the medical literature. There are several consider‑
ations in extracting data from the literature: determining sources of informa‑
tion, defining a search strategy, categorizing the studies identified, assessing 
the internal validity of individual reports, assessing the representativeness of 
the sample of studies identified, and determining the external validity of the 
data, i.e., whether the data that are valid in the context of the published study 
are applicable to the setting of the pharmacoeconomic analysis.

Very often, several studies can be identified that yield range of values for 
the variable of interest. There are two approaches to this situation. First, if 
there are one or two large, well‑designed studies (such as randomized con‑
trolled trials designed and performed under FDA scrutiny), it is reasonable to 
consider this as “best evidence” and disregard larger numbers of smaller, sta‑
tistically underpowered studies or studies with less rigorous designs. Second, 
the results of several studies can be combined in meta‑analyses, systematic 
reviews, or network meta‑analyses.



156

Systematic Review and Meta‑analysis
A systematic review collects all empirical evidence to answer a specific 

research question through a clear and systematic methodology, with a view 
to minimizing bias and thus providing more reliable findings from which 
conclusions can be drawn. Systematic reviews may contain meta‑analyses. 
The term meta‑analysis is used in a number of different ways but, in essence, 
it means the statistical pooling of data from several studies. In particular, the 
meta‑analysis requires studies that are conceptually homogenous in design, 
interventions, and endpoints in order to provide more precise estimates of 
the effects of healthcare relative to the results of individual studies included 
within a review [Higgins, 2011].

Two methods may be used to combine the results obtained by meta‑anal‑
yses:

Example of Systematic Review and Meta‑Analysis

An example of systematic review and meta‑analysis is provided by an investigation 
of the potential benefit of ω‑3 fatty‑acid enriched Parenteral Nutrition (PN) vs 
standard (non‑ω‑3 fattyacid enriched) PN on nosocomial infection and mortality 
in adult hospitalized patients [Pradelli, 2020]. The Authors of the review included 
only randomized controlled trials published in English in peer‑reviewed journals 
containing at least one predefined clinical outcome and laboratory parameters as 
reported in the study protocol. In total, 4495 publications were identified through 
searches on the main databases—such as MEDLINE, Embase, and Cochrane 
database—and 49 with at least one outcome of interest met inclusion criteria. 
Authors calculated a pooled risk ratio for the effect of ω‑3 fatty‑acid enriched 
PN on infections and mortality relative to standard PN. Finally, 24 studies 
(2,154 patients) reported any nosocomial infections: Compared with standard 
PN, ω‑3 fatty‑acid enriched PN significantly reduces the infection rate (RR 0.60, 
95% CI 0.49‑0.72; P < 0.00001), as shown in Figure 7.1. Simultaneously, there 
was a nonsignificant reduction in mortality rate (RR 0.84, 95% CI 0.65‑1.07; 
P = 0.15), based on data reported by 22 studies (1,839 patients). This study, 
published in the Journal of Parenteral and Enteral Nutrition, is a good example of a 
meta‑analysis performed under the procedures of a systematic review: Authors 
adhered to best practice, such as the prospective registration of methods in 
PROSPERO and reporting systematic reviews and meta‑analyses according to 
the PRISMA statement. The statistical pooling was performed with studies that 
were conceptually homogenous in design, interventions, and endpoints. Purists 
might object, however, that the studies were heterogeneous in several ways and 
therefore not eligible for statistical pooling. This is an example of a meta‑analysis 
that is also a systematic review in the tradition of evidence‑based medicine.

Badía-Tahull, 2010 3 13 11 14 4.9% 0.29 [0.10, 0.82]
Chen, 2017 4 40 8 40 3.7% 0.50 [0.16, 1.53]
Friesecke, 2008 11 83 12 82 5.6% 0.91 [0.42, 1.93]
Grau-Carmona, 2015 17 81 29 78 13.6% 0.56 [0.34, 0.94]
Han, 2012 5 18 5 12 2.8% 0.67 [0.24, 1.81]
Jiang, 2010 4 100 12 103 5.4% 0.34 [0.11, 1.03]
Klek, 2005 5 30 8 30 3.7% 0.63 [0.23, 1.69]
Klek, 2008 12 51 13 49 6.1% 0.89 [0.45, 1.75]
Klek, 2011 9 42 10 41 4.7% 0.88 [0.40, 1.94]
Liang, 2008 1 20 1 21 0.4% 1.05 [0.07, 15.68]
Ma, 2015 3 51 1 48 0.5% 2.82 [0.30, 26.22]
Makay, 2011 1 14 2 12 1.0% 0.43 [0.04, 4.16]
Senkal, 2007 4 19 7 21 3.1% 0.63 [0.22, 1.82]
Wachtler, 1997 0 19 2 21 1.1% 0.22 [0.01, 4.31]
Wang, 2009 6 28 9 28 4.1% 0.67 [0.27, 1.62]
Wang, 2012 3 32 4 31 1.9% 0.73 [0.18, 2.99]
Wei, 2014 1 26 6 26 2.8% 0.17 [0.02, 1.29]
Weiss, 2002 4 12 3 11 1.4% 1.22 [0.35, 4.26]
Wichmann, 2007 1 127 5 129 2.3% 0.20 [0.02, 1.71]
Wu, 2014 1 20 1 20 0.5% 1.00 [0.07, 14.90]
Zhang, 2017 15 157 30 155 13.9% 0.49 [0.28, 0.88]
Zhu, 2012 4 29 8 28 3.7% 0.48 [0.16, 1.42]
Zhu, 2012 3 33 6 33 2.8% 0.50 [0.14, 1.83]
Zhu, 2013 14 38 22 38 10.1% 0.64 [0.39, 1.05]
      
Total (95% CI)  1,083  1,071 100.0% 0.60 [0.49, 0.72]

Total events 131  215   

Heterogeneity: χ² = 13.63, df = 23 (P = 0.94); I² = 0%

Test for overall effect: Z = 5.26 (P < 0.00001)
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Figure 7.1. Infection rates. Forest plot of fixed effects meta-analysis showing 
individual study means, pooled estimates, and risk of bias for individual 
studies (Cochrane tool).

CI = Confidence Interval; FA = Fatty Acid; M-H = Mantel-Haenszel;  
PN = Parenteral Nutrition
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Systematic Review and Meta‑analysis
A systematic review collects all empirical evidence to answer a specific 

research question through a clear and systematic methodology, with a view 
to minimizing bias and thus providing more reliable findings from which 
conclusions can be drawn. Systematic reviews may contain meta‑analyses. 
The term meta‑analysis is used in a number of different ways but, in essence, 
it means the statistical pooling of data from several studies. In particular, the 
meta‑analysis requires studies that are conceptually homogenous in design, 
interventions, and endpoints in order to provide more precise estimates of 
the effects of healthcare relative to the results of individual studies included 
within a review [Higgins, 2011].

Two methods may be used to combine the results obtained by meta‑anal‑
yses:

Example of Systematic Review and Meta‑Analysis

An example of systematic review and meta‑analysis is provided by an investigation 
of the potential benefit of ω‑3 fatty‑acid enriched Parenteral Nutrition (PN) vs 
standard (non‑ω‑3 fattyacid enriched) PN on nosocomial infection and mortality 
in adult hospitalized patients [Pradelli, 2020]. The Authors of the review included 
only randomized controlled trials published in English in peer‑reviewed journals 
containing at least one predefined clinical outcome and laboratory parameters as 
reported in the study protocol. In total, 4495 publications were identified through 
searches on the main databases—such as MEDLINE, Embase, and Cochrane 
database—and 49 with at least one outcome of interest met inclusion criteria. 
Authors calculated a pooled risk ratio for the effect of ω‑3 fatty‑acid enriched 
PN on infections and mortality relative to standard PN. Finally, 24 studies 
(2,154 patients) reported any nosocomial infections: Compared with standard 
PN, ω‑3 fatty‑acid enriched PN significantly reduces the infection rate (RR 0.60, 
95% CI 0.49‑0.72; P < 0.00001), as shown in Figure 7.1. Simultaneously, there 
was a nonsignificant reduction in mortality rate (RR 0.84, 95% CI 0.65‑1.07; 
P = 0.15), based on data reported by 22 studies (1,839 patients). This study, 
published in the Journal of Parenteral and Enteral Nutrition, is a good example of a 
meta‑analysis performed under the procedures of a systematic review: Authors 
adhered to best practice, such as the prospective registration of methods in 
PROSPERO and reporting systematic reviews and meta‑analyses according to 
the PRISMA statement. The statistical pooling was performed with studies that 
were conceptually homogenous in design, interventions, and endpoints. Purists 
might object, however, that the studies were heterogeneous in several ways and 
therefore not eligible for statistical pooling. This is an example of a meta‑analysis 
that is also a systematic review in the tradition of evidence‑based medicine.

Badía-Tahull, 2010 3 13 11 14 4.9% 0.29 [0.10, 0.82]
Chen, 2017 4 40 8 40 3.7% 0.50 [0.16, 1.53]
Friesecke, 2008 11 83 12 82 5.6% 0.91 [0.42, 1.93]
Grau-Carmona, 2015 17 81 29 78 13.6% 0.56 [0.34, 0.94]
Han, 2012 5 18 5 12 2.8% 0.67 [0.24, 1.81]
Jiang, 2010 4 100 12 103 5.4% 0.34 [0.11, 1.03]
Klek, 2005 5 30 8 30 3.7% 0.63 [0.23, 1.69]
Klek, 2008 12 51 13 49 6.1% 0.89 [0.45, 1.75]
Klek, 2011 9 42 10 41 4.7% 0.88 [0.40, 1.94]
Liang, 2008 1 20 1 21 0.4% 1.05 [0.07, 15.68]
Ma, 2015 3 51 1 48 0.5% 2.82 [0.30, 26.22]
Makay, 2011 1 14 2 12 1.0% 0.43 [0.04, 4.16]
Senkal, 2007 4 19 7 21 3.1% 0.63 [0.22, 1.82]
Wachtler, 1997 0 19 2 21 1.1% 0.22 [0.01, 4.31]
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Wang, 2012 3 32 4 31 1.9% 0.73 [0.18, 2.99]
Wei, 2014 1 26 6 26 2.8% 0.17 [0.02, 1.29]
Weiss, 2002 4 12 3 11 1.4% 1.22 [0.35, 4.26]
Wichmann, 2007 1 127 5 129 2.3% 0.20 [0.02, 1.71]
Wu, 2014 1 20 1 20 0.5% 1.00 [0.07, 14.90]
Zhang, 2017 15 157 30 155 13.9% 0.49 [0.28, 0.88]
Zhu, 2012 4 29 8 28 3.7% 0.48 [0.16, 1.42]
Zhu, 2012 3 33 6 33 2.8% 0.50 [0.14, 1.83]
Zhu, 2013 14 38 22 38 10.1% 0.64 [0.39, 1.05]
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Figure 7.1. Infection rates. Forest plot of fixed effects meta-analysis showing 
individual study means, pooled estimates, and risk of bias for individual 
studies (Cochrane tool).

CI = Confidence Interval; FA = Fatty Acid; M-H = Mantel-Haenszel;  
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 • Fixed‑Effect (FE) model, that assumes homogeneity among studies. It is 
used when the sampling variability (due to sample size for each study) 
is the only source of variability. For example, it is appropriate when re‑
sults from randomized clinical trials, which follow a common protocol, 
are combined;

 • Random‑Effect (RE) model, that assumes heterogeneity among studies. It 
is adopted when there are two sources of variability: sampling variability 
(within study) and heterogeneity (measured between studies). Therefore, 
it is preferred when results from observational studies or potentially het‑
erogeneous randomized clinical trials are combined and in general when 
the homogeneity assumption is no longer appropriate due to differences 
in design, analysis, studied population, and experimental condition.

In systematic reviews and meta‑analyses, an evidence‑based minimum set 
of items is generally used for reporting, i.e., Preferred Reporting Items for 
Systematic Reviews and Meta‑Analyses (PRISMA). The relevant checklist, 
flow diagram, statement, and explanation and elaboration are available at 
the website: https://prisma‑statement.org/.

In addition, the International Prospective Register of Systematic Reviews 
(PROSPERO) gathers the protocols of systematic reviews [PROSPERO]. This 
procedures ensures that the reported analyses were not decided post‑hoc to 
show something that was found “by chance” (e.g., with data mining tech‑
niques) or after ad hoc outcome selection.

One of the most useful sources for meta‑analyses of trials evaluating the 
efficacy of treatments is the Cochrane Database of Systematic Reviews (www.
cochrane.org).

Network Meta‑Analysis

Differently from metanalyses, which contemplate direct comparisons (i.e., 
studies in which the same experimental drug is compared to the same com‑
parator for the same outcome), network meta‑analyses or Mixed Treatment 
Comparison (MTC) allow indirect comparisons of treatment effects. In fact, 
they enable us to combine trials comparing different sets of treatments and 
form a network of evidence within a single analysis [Caldwell, 2005]. Given 
that A, B, and C are three different treatments, the validity of this analysis is 
closely conditional to three assumptions [Salanti, 2013]:

 • Homogeneity, which, in turn, includes the second and third assump‑
tions.

 • Transitivity, that means that one can learn about B versus C via A.
 • Consistency, i.e., direct and indirect evidence are in agreement.

https://prisma<2011>statement.org/
www.cochrane.org
www.cochrane.org


159

The main assumption in network meta‑analysis is that relative within‑trial 
treatment effects can be pooled, thus generalizing meta‑analysis: Instead of 
solely considering RCTs conducted to investigate the same direct compari‑
son, it infers on the network of available evidence.

The relevance in pharmacoeconomics is related to the possibility to inform 
simulation modeling about treatment comparisons that have not been (suf‑
ficiently) studied in clinical trials.

Example of Network Meta‑Analysis

A Network Meta‑Analysis (NMA) has been developed to determine the most 
effective therapy or combination of therapies in minimizing the exposure to 
homologous transfusion and the number of transfused Packed Red Blood Cells 
(PRBCs), while maximizing post‑operative hemoglobin (Hb) during cardiac and 
thoracic surgery [Pradelli, 2016].
A systematic literature review up to July 2015 was performed via PubMed 
including Randomized Controlled Trials (RCTs), meta‑analyses, and reviews. In 
addition, a non‑systematic search was performed using Google Scholar.
Investigated outcomes were Post‑Operative (PO) Hb, Transfusion Rate (TR), 
and total number of transfused PRBCs. Only papers reporting both Hb (or 
Hct converted in Hb—conversion factor from Hct to Hb: 0.3389, R2   = 0.8869, 
p < 0.0001) and TR or number of transfused PRBCs were considered. The choice 
of concurrently assessing clinical outcomes “three‑dimensionally” aims to get a 
clearer picture of the perioperative blood management activity: since comparisons 
representing just one of the dimensions might be confusing and misleading 
(i.e., evaluating one therapy better than another based only on lower TR, while 
requiring more units transfused (PRBCs), or achieving a low level of Hb). 
A random effects model with hierarchical structure was coded in WinBUGS 
according to the standard Bayesian Markov Chain Monte Carlo (MCMC) approach 
for indirect comparisons, multi‑arm trials, and NMA. TR was modeled on the logit 
scale, while normal likelihood is used for continuous variables (PO Hb and mean 
number of PRBCs transfused).
A total of 86 RCTs were selected, comparing 48 different active strategies that 
were grouped into five broad categories (Figure 7.2 left):

 • Auto‑Transfusion (AT) of processed blood through the use of centrifugal cell 
washing (Cell Salvage—CS) or intraoperative blood processed using only an 
UltraFiltration device (UF) or unprocessed/unwashed blood (noCS);

 • Administration of Antifibrinolytics (AA): aprotinin, tranexamic acid, 
e‑aminocaproic acid, or desmopressin.

 • The combined use of auto‑transfusion and antifibrinolytics (AT+AA);
 • Acute Normovolemic Hemodilution (ANH);
 • No intervention (NT).
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Clinical Studies

In extremis, when the required data are not available in the literature, a 
dedicated study must be performed. Observational studies are often under‑
taken to determine costs. However, a clinical trial is never undertaken with 
the sole purpose of determining cost‑effectiveness. This is because a cost‑ef‑
fectiveness analysis is only considered after effectiveness has first been dem‑
onstrated. However, cost data may be collected prospectively in an effective‑
ness (or efficacy) trial, which is then called a “piggyback trial”.

Administrative Databases

Medical information about patients, such as blood pressure, temperature, 
severity of illness, etc., is usually recorded on paper “charts” and is conve‑
niently accessible only for individual patients or small groups of patients. An 
alternative is to “follow the money”. Every healthcare transaction that takes 
place is documented using standard systems of codification, with the ulti‑
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Figure 7.2. On the left, the evidence network resulting from systematic 
literature review (every edge between two nodes is labelled with the 
number of studies that compared the strategies represented by these 
nodes). On the right, the same network with AT+AA strategy blown‑up into 
3 strategies according to AT techniques (CS, noCS ,or UF).

AA = Administration of Antifibrinolytics; ANH = Acute Normovolemic Hemodilution;  
AT = Auto-Transfusion; CS = Cell Salvage; NT = no intervention;  
UF = UltraFiltration device

Furthermore, the category AT+AA was blown up into the 3 strategies according 
to AT techniques in order to investigate the specific effect of AT strategies (Figure 
7.2 right).
AT+AA has the highest probability to be the best technique in reducing both TR 
and PRBCs transfused with high PO Hb, followed by AT alone. In combination with 
AA, the most effective AT strategy results CS (Table 7.2):

 • The odds of TR are 0.36 (95% CrI 0.19–0.69) vs noCS+AA and 0.31 (95% CrI 
0.11–0.88) vs. UF+AA with Bayesian p‑value > 0.99;

 • The amount of PRBCs transfused is ‑0.74 (95% CrI ‑1.41–0.02) vs noCS+AA and 
‑0.9 (95% CrI ‑1.75–0.05) vs. UF+AA both with Bayesian p‑value > 0.97;

 • The level of PO Hb results quite the same for all 3 strategies.

According to NMA results, the Authors could conclude that the use of washed cell 
salvage in combination with antifibrinolytics is the optimum strategy to address 
perioperative blood loss. Also, replacing cell salvage with other autologous 
techniques such as unwashed cell salvage and ultrafiltration, or abolishing the 
combined use of antifibrinolytics, will increase the recourse to banked blood.

Transfusion rate (OR)

noCS+AA UF+AA

CS+AA 0.36 (0.19–0.69) [>0.99] 0.31 (0.11–0.88) [0.98]

noCS+AA 0.87 (0.32–2.13) [0.67]

PRBCs transfused (mean difference)

noCS+AA UF+AA

CS+AA ‑0.74 (‑1.41–0.02) [0.97] ‑0.90 (‑1.75–0.05) [0.97]

noCS+AA ‑0.16 (‑1.07–0.73) [0.68]

PO Hb (mean difference)

noCS+AA UF+AA

CS+AA 0.23 (‑0.17–0.62) [0.87] 0.23 (‑0.97–0.88) [0.81]

noCS+AA 0.00 (‑1.17–0.65) [0.41]

Table 7.2. Odds Ratios (OR) for the logit model and mean differences for the 
normal models for each pair of treatments and each outcome compared: 
Each cell gives the posterior mean with 95% central credible interval (CrI) in 
parentheses followed by the posterior probability that OR < 1 (or the mean 
difference <0).

AA = Administration of Antifibrinolytics; CS = Cell Salvage; Hb = Hemoglobin; PO = 
Post-Operative; PRBC = Packed Red Blood Cells; UF = UltraFiltration device
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Clinical Studies

In extremis, when the required data are not available in the literature, a 
dedicated study must be performed. Observational studies are often under‑
taken to determine costs. However, a clinical trial is never undertaken with 
the sole purpose of determining cost‑effectiveness. This is because a cost‑ef‑
fectiveness analysis is only considered after effectiveness has first been dem‑
onstrated. However, cost data may be collected prospectively in an effective‑
ness (or efficacy) trial, which is then called a “piggyback trial”.

Administrative Databases

Medical information about patients, such as blood pressure, temperature, 
severity of illness, etc., is usually recorded on paper “charts” and is conve‑
niently accessible only for individual patients or small groups of patients. An 
alternative is to “follow the money”. Every healthcare transaction that takes 
place is documented using standard systems of codification, with the ulti‑
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Figure 7.2. On the left, the evidence network resulting from systematic 
literature review (every edge between two nodes is labelled with the 
number of studies that compared the strategies represented by these 
nodes). On the right, the same network with AT+AA strategy blown‑up into 
3 strategies according to AT techniques (CS, noCS ,or UF).

AA = Administration of Antifibrinolytics; ANH = Acute Normovolemic Hemodilution;  
AT = Auto-Transfusion; CS = Cell Salvage; NT = no intervention;  
UF = UltraFiltration device

Furthermore, the category AT+AA was blown up into the 3 strategies according 
to AT techniques in order to investigate the specific effect of AT strategies (Figure 
7.2 right).
AT+AA has the highest probability to be the best technique in reducing both TR 
and PRBCs transfused with high PO Hb, followed by AT alone. In combination with 
AA, the most effective AT strategy results CS (Table 7.2):

 • The odds of TR are 0.36 (95% CrI 0.19–0.69) vs noCS+AA and 0.31 (95% CrI 
0.11–0.88) vs. UF+AA with Bayesian p‑value > 0.99;

 • The amount of PRBCs transfused is ‑0.74 (95% CrI ‑1.41–0.02) vs noCS+AA and 
‑0.9 (95% CrI ‑1.75–0.05) vs. UF+AA both with Bayesian p‑value > 0.97;

 • The level of PO Hb results quite the same for all 3 strategies.

According to NMA results, the Authors could conclude that the use of washed cell 
salvage in combination with antifibrinolytics is the optimum strategy to address 
perioperative blood loss. Also, replacing cell salvage with other autologous 
techniques such as unwashed cell salvage and ultrafiltration, or abolishing the 
combined use of antifibrinolytics, will increase the recourse to banked blood.

Transfusion rate (OR)

noCS+AA UF+AA

CS+AA 0.36 (0.19–0.69) [>0.99] 0.31 (0.11–0.88) [0.98]

noCS+AA 0.87 (0.32–2.13) [0.67]

PRBCs transfused (mean difference)

noCS+AA UF+AA

CS+AA ‑0.74 (‑1.41–0.02) [0.97] ‑0.90 (‑1.75–0.05) [0.97]

noCS+AA ‑0.16 (‑1.07–0.73) [0.68]

PO Hb (mean difference)

noCS+AA UF+AA

CS+AA 0.23 (‑0.17–0.62) [0.87] 0.23 (‑0.97–0.88) [0.81]

noCS+AA 0.00 (‑1.17–0.65) [0.41]

Table 7.2. Odds Ratios (OR) for the logit model and mean differences for the 
normal models for each pair of treatments and each outcome compared: 
Each cell gives the posterior mean with 95% central credible interval (CrI) in 
parentheses followed by the posterior probability that OR < 1 (or the mean 
difference <0).

AA = Administration of Antifibrinolytics; CS = Cell Salvage; Hb = Hemoglobin; PO = 
Post-Operative; PRBC = Packed Red Blood Cells; UF = UltraFiltration device
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mate purpose of obtaining payment. This codified information can be used 
not only to track payments for healthcare services, but to build a picture of 
the healthcare services used by a patient or class of patients, and to infer a 
picture of the courses of diseases and the effects of the treatments.

The main types of data contained in administrative databases are:
 • Demographic. Demographic data are usually limited to the patient’s age 

and gender.
 • Diagnostic. The diagnosis the patient receives is entered as a code using 

the International Classification of Diseases (ICD). The principal diagnosis 
and a limited number of comorbidities are recorded by their ICD codes 
and, for the healthcare services that use it, also with the relevant Diag‑
nosis Related Group (DRG).

 • Procedural. The exact nature of any procedure performed by a physi‑
cian is documented in terms of a Current Procedural Terminology (CPT) 
code.

 • Pharmaceutical. Each drug that is prescribed is specified by its National 
Drug Code (NDC). Drug consumption is reported in terms of dispensed 
packages.

These datasets also include information on the service provider: the physi‑
cian’s specialty, the setting (primary care, outpatient, inpatient), geographic 

Example: A HMO Administrative Database Analysis

The healthcare costs of peptic ulcers and bleeding resulting from the prescription 
of Non‑Steroidal Anti‑Inflammatory Drugs (NSAIDs) for arthritis have been 
intensively investigated. Johnson et al. estimated the incidence of inpatient and 
outpatient gastropathies, the services provided to treat them, and the costs 
of those services for elderly members of a Health Maintenance Organization 
(HMO) located in the north‑west United States [Johnson, 1997]. The data for 
morbidity and healthcare resource use were obtained from four automated 
databases maintained by the HMO: an outpatient pharmacy database, a hospital 
discharge database, a membership information database, and an outpatient 
utilization database. These four data sets were linked using the patient identifier 
tagging each record. The pharmacy and hospital discharge databases contained 
information for every prescription and inpatient stay, respectively, that occurred. 
The outpatient database represented a random sample of outpatient encounters 
abstracted from paper medical records. Costs to the HMO were estimated from 
the Medicare Cost Report, an aggregate report of costs that includes direct 
medical and overhead costs related to capital investment, general administration, 
etc., and which formed the basis for cost‑based Medicare reimbursements to the 
HMO. The result of the study was that, for every dollar spent by the HMO on 
NSAID therapy for the elderly, another 35 cents was spent to treat the adverse 
gastrointestinal effects of the NSAIDs.
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location, and, if inpatient, patient identifier, a unique number that identifies 
the recipient of the healthcare service.

It should be pointed out that the nature (public or private) and the infor‑
mation available in administrative databases varies according to the nation. 
For example, in the USA claims are almost the unique source. The claims are 
the reimbursement requests to Health Maintenance Organizations (HMOs— 
insurance structures that provide coverage through a network of physicians) 
made by providers such as hospitals, pharmacies, and healthcare profession‑
als. The HMOs’ databases are linked to the expenses incurred by each insured 
person. Because of the fragmented nature of the Healthcare System in the 
United States, however, collating the different datasets into one coherent 
whole may be problematic for any given population of patients. State Med‑
icaid and Medicare datasets are certain comprehensive records for patients 
covered by this insurance systems, but they only apply to eligible indigent and 
elderly (65 years and over) patients, respectively. Staff model HMOs also may 
contain complete datasets. In the case of third‑party payment systems, how‑
ever, the datasets may be dispersed among different payer. Pharmacy datas‑
ets may be maintained by Pharmacy Benefit Management companies (PBMs), 
while numerous healthcare insurers may maintain hospital and primary care 
claims data. Collations of private sector healthcare insurance datasets can 
be purchased that offer a complete picture of the encounters of hundreds of 
thousands of patients with the healthcare system over defined time periods.

Conversely, in Italy and in other countries, data must be collected by sev‑
eral databases by using data linkage, i.e., gathering data on the same patient 
from different databases by means of a unique code, e.g., the fiscal code.

Example: A Private‑Pay, Fee‑for‑Service Database Analysis

The healthcare costs associated with the treatment of depression with different 
classes of antidepressant drugs were estimated in a retrospective cohort study 
[Poret, 2001]. The data source was a proprietary database of medical and 
pharmacy claims collated from numerous private, fee‑for‑service healthcare 
insurers covering employees of corporate America. Individuals who had a new 
prescription for an antidepressant drug and a diagnosis of depression within 
a defined time period (the index period) were identified, and their healthcare 
resource use was tracked for the next six months. A diagnosis of depression 
was indicated by a relevant ICD‑9 code in inpatient and outpatient records. 
Antidepressant drugs were identified by their NDC codes. Costs were compared 
for antidepressant drug classes using an intent‑to‑treat analysis, i.e., the patient 
was classified according to the initial antidepressant drug he or she was prescribed 
in the index period, regardless of whether he or she subsequently switched to 
another class during the follow‑up period.
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Financial Data

Administrative datasets contain the dollar (or euro, etc.) payments made 
for the healthcare resources used. These payments are not necessarily the 
same as the charges made by the payee because of negotiated fee schedules, 
capitation, etc. List prices of healthcare goods and services are published by 
State Medicare systems. In the United States, list prices for drugs are pub‑
lished as average wholesale prices and are also available as retail prices. Data 
on employee remuneration, which might be needed for an indirect costs 
analysis, are provided by the Bureau of Labor Statistics.

7.2 Statistical Analysis

Classical statistics is based on hypothesis testing. The hypothesis is made 
that the observations to be explained are the result purely of chance: This is 
the null hypothesis. A calculation is then made of the probability that the 
observations would arise under the null hypothesis and, if that probability is 
below an arbitrary threshold (most often 1 in 20, or 0.05), the null hypothesis 
is rejected. The results cannot be explained purely by chance and are said to 
be “statistically significant”.

Note that the above procedure explores the role of random chance and in 
itself does nothing to assess the role of systematic error (discussed below), 

Example: Classical Statistics

The efficacy and safety of ustekinumab (UST), a human IgG1 monoclonal antibody 
currently approved for several autoimmune diseases, has been recently evaluated 
in patients with moderately‑to‑severely active Ulcerative Colitis (UC) in a phase 
III, randomized, double‑blind, placebo (PBO)‑controlled study [Sands, 2019]. In 
this study, 15.6% of patients received 130 mg intravenous UST (50/320) and 
5.3% of patients treated with PBO (17/319) achieved clinical remission at week 
8 (chi‑square test, p‑value < 0.001). In this example, p‑value represents the 
probability of obtaining an effect at least as extreme as the one we have measured 
(15.6% vs. 5.3%), assuming the truth of the null hypothesis, i.e., UST has the same 
efficacy of PBO. Hence, according to the test’s result, if UST had no effect, we 
would observe such results but chance in less than 0.1% of experiments. The 
difference in clinical remission rate among patients treated with UST and those 
treated with PBO is “statistically significant” and we can conclude that UST is not 
equivalent to PBO, but it is likely to be better than PBO.
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which is often more important than random error. Hypothesis testing is not 
particularly useful in decision analysis, where we need to know the probabil‑
ity of a certain event occurring (such as death from a myocardial infarction) 
under a certain set of circumstances (such as when a patient has already had 
one heart attack). The calculation of such conditional probabilities is referred 
to as Bayesian analysis. To the non preconditioned mind, the Bayesian ap‑
proach may be more intuitive, if less conceptually sophisticated, than hy‑
pothesis testing.

Example: Bayesian Analysis

Classical (frequentist) statistics uses only experimental evidence to reject/confirm 
the null hypothesis, while Bayesian analysis includes also the previous knowledge 
of the phenomenon under study.
Let’s consider the results of two different RCTs comparing dabrafenib, an 
antineoplastic BRAF‑inhibitor, with placebo in patients suffering from metastatic 
melanoma (trial 1) and non‑small cell lung cancer (trial 2) in terms of 1‑year 
mortality (Table 7.3).

Dabrafenib Placebo RR (95% CI)

Trial 1 (N = 600) 98/300 (32.7%) 147/300 (49.0%) 0.67 (0.51 to 0.87), 
p = 0.0021

Trial 2 (N = 200) 32/100 (32.0%) 44/100 (44.0%) 0.73 (0.45 to 1.17), 
p = 0.2067

Table 7.3. 1‑year mortality in two different hypothetical randomized 
controlled trials comparing dabrafenib with placebo in patients suffering 
from metastatic melanoma (trial 1) and non‑small cell lung cancer (trial 2).

CI = confidence interval; RR = relative risk

In both trials there is a reduction of 1‑year mortality in patients treated with 
dabrafenib, but only in the first trial the efficacy of dabrafenib was proven (p under 
the standard threshold of 0.05).
The Bayesian interpretation of the second trial could be more informative:

 • Both diseases are cancers associated with the BRAF gene mutation;
 • Dabrafenib is a BRAF‑inhibitor and proved effective in the first clinical trial with 

large sample size;
 • Trial 2 is smaller than trial 1, but the effect of dabrafenib is similar to that 

observed in trial 1.
By using the information from trial 1, it is possible to adjust the comparison in the 
trial 2; the posterior probability that dabrafenib reduces 1‑year mortality is > 90%.
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7.3 Accounting for Uncertainty

Definition of Error

There are two kinds of error, namely random error and systematic error. 
Random error is variability in the result caused by random or unpredictable 
variability in the factors determining the result. Systematic error is a bias in 
the result caused by nonrandom variability in these factors.

To understand the distinction between the two kinds of error, imagine 
darts thrown at a dartboard. The random clustering of the darts around the 
bull’s eye (which is the target) represents random error. The tighter the clus‑
tering around the bull’s eye, the less random error there is. If the darts tend 
to cluster in the lower right quadrant of the board, for example, there is a 
systematic error or bias in the thrower’s aim.

In this context, the word “error” means variability and does not imply 
that a preventable mistake has been made. Similarly, the word “bias” does 
not require a conscious or unconscious human motivation to alter the re‑
sults.

Principal Sources of Error in Clinical Studies

Although many types of bias in the design and conduct of chemical studies 
have been described, Chalmers has pointed out that most fall into three im‑
portant categories: selection bias at study entry, selection bias after study 
entry, and bias in assessing outcomes [Chalmers, 1989] (Table 7.4).

Selection bias at study entry may occur when a randomizing clinician 
knows in advance in which arm the patient will be allocated, thus consciously 
or unconsciously excluding unsuitable patients [Souter, 1997].

Example

Several randomly chosen human subjects were given the same dose of a drug. The 
response of the subjects to the single dose varied greatly and a graph of the drug 
response versus frequency described a bell curve. Among the factors causing this 
variability, there were genetically determined differences among subjects in their 
ability to absorb, metabolize, and eliminate the drug, and in the interaction of the 
drug with its tissue target. The subjects varied greatly in their body mass, blood 
volume, percent body fat, the metabolizing ability of their livers, and in a host of 
other attributes that modified the action of the drug.

Error Controlled trial
Comparative 

observational study

Selection bias at 
study entry

Randomization Case matching, propensity 
scoring

Selection bias after study 
entry

Intent‑to‑treat analysis Intent‑to‑treat analysis, 
multivariate analysis

Bias in assessing outcomes Observer blinding, subject 
blinding

Table 7.4. Means of accounting for systematic error by study design.
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Selection bias after study entry may occur if patients who left their assigned 
treatment group were not included in the analysis, since these patients were 
subject to some form of selection.

Bias in assessing outcomes occur when the researcher that has to assess 
outcomes and effects is aware of group allocation [Souter, 1997].

Reducing Error in Clinical Studies

The obscuring of the true result due to random error can be lessened in two 
ways: by increasing the sample size, and by reducing the variability in the 
sample. Approaches to reducing systematic error are discussed below.

Selection Bias in Subjects Entering the Study

Randomization

In a controlled clinical trial, random allocation of subjects to treatments 
eliminates systematic error at study entry. An imbalance in the allocation of 
subjects may remain—e.g., more females than males may be assigned to treat‑
ment A than to treatment B—simply because of random error, but this may 
be reduced by increasing the sample size. The process of random allocation 
is blind to both perceivable and unperceivable differences between subjects, 
and this is its principal virtue.

Randomization procedure should achieve the following objectives [Lachin, 
1988]:

 • Equal group sizes for adequate statistical power, especially in subgroup 
analyses;

 • Low selection bias; the procedure should not allow an investigator to 
predict how subjects will be assigned in reviewing the previous pairings;
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 • Low probability of confounding (i.e., a low probability of “accidental 
bias”), which implies a balance in covariates across groups. If the ran‑
domization procedure causes an imbalance in covariates related to the 
outcome across groups, estimates of effect may be biased if not adjusted 
for the covariates.

No single randomization procedure meets those goals in every circum‑
stance, so researchers must select a procedure for a given study based on its 
advantages and disadvantages [Roter, 1998].

Randomization procedures are described below.
Simple randomization. Intuitive and commonly used procedure, similar 

to “repeated fair coin‑tossing”, also known as “complete” or “unrestricted” 
randomization. It is robust against both selection and accidental biases. 
However, its main drawback is the possibility of imbalanced group sizes in 
small RCTs. It is therefore recommended only for RCTs with over 200 sub‑
jects.

Restricted randomization. To balance group sizes in smaller RCTs, some 
form of restricted randomization is recommended. The major types of re‑
stricted randomization used in RCTs are:

 • Blocked randomization: The number of subjects in one group versus the 
other group and the block size are specified; subjects are allocated ran‑
domly within each block. For example, a block size of 6 and an allocation 
ratio of 2:1 would lead to random assignment of 4 subjects to one group 
and 2 to the other. Unfortunately, even if the block sizes are large and 
randomly varied, the procedure can lead to selection bias.

 • Adaptive biased‑coin randomization methods: relatively uncommon 
methods in which the probability of being assigned to a group decreases 
if the group is over‑represented and increases if the group is under‑rep‑
resented. The methods are thought to be less affected by selection bias 
than permuted‑block randomization.

Adaptive randomization. Less frequently, other two types of adaptive ran‑
domization procedures have been used in RCTs:

 • Covariate‑adaptive randomization: The probability of being assigned to 
a group varies in order to minimize covariate imbalance. Since only the 
first subject’s group assignment is truly chosen at random, the method 
does not necessarily eliminate bias on unknown factors.

 • Response‑adaptive randomization, also known as outcome‑adaptive 
randomization: The probability of being assigned to a group increases if 
the responses of the prior patients in the group were favorable.
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Case Matching
In a comparative observational study, there may be considerable differenc‑

es between the subjects who received treatment A and those who received 
treatment B. The investigator can control for perceivable (but not imperceiv‑
able) differences in subjects by balancing these characteristics between the 
two comparative groups. This is case matching.

Propensity Scoring

In an analysis based on propensity scores, subjects in group A are matched 
with those subjects in group B who have the same propensity score, where 
the propensity score is the probability that a subject will be assigned to group 
B rather than group A based on a composite of observable determining char‑
acteristics [Joffe, 1999]. The study population is then divided into categories 
(usually quintiles) based on their propensity score and within each quintile 
the outcomes of individuals who received treatment A are compared with 
those who received treatment B. Propensity score matching is based on two 
technical assumptions [Robinson, 2004]:

 • Assumption 1 (Conditional Independence Assumption—CIA): There is a 
set X of covariates, observable to the researcher, such that after control‑
ling for these covariates, the potential outcomes are independent of the 
treatment status. The CIA is crucial for correctly identifying the impact 
of the program, since it ensures that, although treated and untreated 
groups differ, these differences may be accounted for in order to reduce 
the selection bias. This allows the untreated units to be used to construct 
a counterfactual for the treatment group.

Example of Case Matching

It is the year 2019. Patients who happened to receive treatment A at a clinic in 
the year 2017 were predominantly female and younger, while those who received 
treatment B were mostly male and older. The investigator compares treatment A 
with treatment B by picking, for example, a female in the 30‑40 year age category 
who received treatment A and a (harder‑to‑find) female in the same age category 
who happened to have received treatment B. The investigator does the same for 
females in the 50‑60 year age category and in the 70‑80 year age category, etc., 
and for males in the same age categories. The investigator now has a group who 
received treatment A that is evenly balanced by age and gender with a group 
who received treatment B, and he may proceed with computation of the study 
outcome.
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 • Assumption 2 (common support condition): For each value of X, there 
is a positive probability of being both treated and untreated. Then, a 
simple way of interpreting this assumption is the following: The propor‑
tion of treated and untreated individuals must be greater than zero for 
every possible value of X.

When these two assumptions are satisfied, the treatment assignment is said 
to be strongly ignorable [Robinson, 2004].

Selection Bias in Subjects After Entering the Study

In a randomized controlled trial, subjects initially allocated to receive (say) 
treatment A might subsequently leave their assigned treatment group and 
receive no treatment, an unplanned treatment, or switch to treatment B. In 
an intent‑to‑treat analysis, all subjects initially assigned to receive treatment 
A are included in the analysis of outcomes of group A. This ensures that the 
function of randomization—the control for selection bias—is preserved. A se‑
lection bias would be introduced if patients who left their assigned treatment 
group were not included in the analysis, since these patients were subject to 
some form of selection. The same intent‑to‑treat approach can be applied to 
retrospective studies.

7.4 Pharmacoeconomic Studies

Sensitivity Analysis

The sample decision analysis described earlier (see Chapter 4) contained an 
example of one‑way sensitivity analysis, which is a type of simple sensitivity 
analysis, that, in turn, is one of several general approaches.

Simple Sensitivity Analysis

In simple sensitivity analysis, one study variable is varied over the range of 
likely values, while all other variables are held constant. If the variables are 
independent, a series of one‑way sensitivities is informative. In two‑way sen‑
sitivity analysis, the effects of varying two variables simultaneously are com‑
puted. Similarly, in three‑way sensitivity analysis, three variables are varied 
over their likely ranges of values at the same time. Two‑ and three‑way sen‑
sitivity analyses are more appropriate when study variables interact. Calcula‑
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tions are performed using a computer program and results are displayed 
graphically.

Results of one‑way analysis can be represented by a tornado diagram, 
which is a special type of bar chart, where data categories are listed vertically 

Example of Simple Sensitivity Analysis

A decision analytic DES model was built recently [Pradelli, 2012a] in order to 
compare the cost‑effectiveness of two treatment alternatives for patients needing 
parenteral nutrition: Use of parenteral ω‑3 enriched emulsions or standard fat 
emulsions. A one‑way analysis is applied on the base case scenario to study which 
parameters are most influential on final results. Given that the main conclusion of 
the base‑case simulation is dominance (parenteral ω‑3 vs. standard fat emulsion), it 
was chosen to explore the effect of parameter value estimates on total incremental 
costs (Figure 7.3) by a deterministic one‑way analysis.

∆ Hospital LOS

∆ ICU LOS

Daily cost Ward

Daily cost ICU

Probability of dying in ICU

LOS Ward

Infection rate

LOS ICU (alive patients)

Lipid daily dose

LOS ICU (dead patients)

Daily TPN cost

Cost infection

Weight

Probability of infection

TPN duration

Probability of dying in Ward

LOS pre-ICU

2,200 2,700 4,7004,2003,7003,200 5,200

ICU patients max ICU patients minBase saving = 3,798.85€

€

Figure 7.3. Example of a tornado diagram. The extremes of the 95% 
confidence interval were selected as minimum and maximum values of 
parameters; for variables without such intervals, a ±20% variation is applied 
to baseline values.

ICU = Intensive Care Unit; LOS = Length Of Stay; TPN = Total Parenteral Nutrition
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instead of the standard horizontal presentation, and categories are ordered 
so that the largest bar appears at the top of the chart, the second largest ap‑
pears second from the top, and so on. These graphs are so named because the 
final chart appears like a tornado (Figure 7.3).

Probabilistic Analysis

Instead of performing several one‑way or multi‑way analyses, it would be 
more desirable to perform an “every‑way” analysis, i.e., simultaneously vary 
all the study variables throughout their ranges of likely values. A computer 
program can do this by starting with an imaginary cohort of, say, 1,000 pa‑
tients and running them one by one through the decision tree, randomly as‑
signing a likely value for the probability at each chance node. A distribution 
of outcome values for the entire 1,000 patients can be thus calculated, and a 
mean and 95% confidence interval (95% CI) computed. When distributions 
for the values of chance node probabilities are known, the computer can take 
these into account (rather than assuming a uniform distribution within a 
range of values).

The patient‑level, probabilistic simulation (also called “Monte Carlo simu‑
lation”) is performed by drawing parameter values from their probability dis‑
tribution for each simulated individual, and allows to take into account two 
levels of uncertainty [Briggs, 2001]:

 • The uncertainty on patient characteristics, which represents the effec‑
tive heterogeneity among subjects;

 • The uncertainty about model parameters, to represent the cognitive un‑
certainty on values derived from experimental measurements.

In cost‑effectiveness analysis, results of probabilistic analysis can be repre‑
sented by a scatterplot: Incremental costs and benefits are plotted on the 
cost‑effectiveness plane and the grade of dispersion of the cloud of points can 
provide a visual indication of model stability (Figure 7.4).

Black square indicates ICER in the base case while grey points are simulat‑
ed‑patients in the probabilistic sensitivity analysis. The black ellipse repre‑
sents the 95% confidence ellipse and the slope of each straight lines repre‑
sents possible Willingness To Pay (WTP) thresholds. The fraction of points 
under the lines are simulated patients within the threshold associated with 
each line (as shown in Figure 7.4); more precisely the area of the 95% confi‑
dence ellipse under each line corresponds to the probability that the treat‑
ment is cost‑effective given each WTP threshold.

To understand the uncertainty around the mean incremental cost and ben‑
efit, it is useful to plot, together with the 1,000 results of probabilistic simu‑
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lation, 95% confidence ellipse that represents the region in the incremental 
cost‑effectiveness plane with a 95% probability of containing the mean in‑
cremental cost and incremental benefit [Nixon, 2010]; those simulations that 
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so that the largest bar appears at the top of the chart, the second largest ap‑
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signing a likely value for the probability at each chance node. A distribution 
of outcome values for the entire 1,000 patients can be thus calculated, and a 
mean and 95% confidence interval (95% CI) computed. When distributions 
for the values of chance node probabilities are known, the computer can take 
these into account (rather than assuming a uniform distribution within a 
range of values).

The patient‑level, probabilistic simulation (also called “Monte Carlo simu‑
lation”) is performed by drawing parameter values from their probability dis‑
tribution for each simulated individual, and allows to take into account two 
levels of uncertainty [Briggs, 2001]:

 • The uncertainty on patient characteristics, which represents the effec‑
tive heterogeneity among subjects;

 • The uncertainty about model parameters, to represent the cognitive un‑
certainty on values derived from experimental measurements.

In cost‑effectiveness analysis, results of probabilistic analysis can be repre‑
sented by a scatterplot: Incremental costs and benefits are plotted on the 
cost‑effectiveness plane and the grade of dispersion of the cloud of points can 
provide a visual indication of model stability (Figure 7.4).

Black square indicates ICER in the base case while grey points are simulat‑
ed‑patients in the probabilistic sensitivity analysis. The black ellipse repre‑
sents the 95% confidence ellipse and the slope of each straight lines repre‑
sents possible Willingness To Pay (WTP) thresholds. The fraction of points 
under the lines are simulated patients within the threshold associated with 
each line (as shown in Figure 7.4); more precisely the area of the 95% confi‑
dence ellipse under each line corresponds to the probability that the treat‑
ment is cost‑effective given each WTP threshold.

To understand the uncertainty around the mean incremental cost and ben‑
efit, it is useful to plot, together with the 1,000 results of probabilistic simu‑
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classic illustration of the CEAC is an “S”‑shaped curve starting from the origin 
and asymptotic to 1 (as seen in Figure 7.5), but this is just one of the possible 
shape that CEAC can take. All possible CEAC shapes depend on the configura‑
tion of the 95% confidence ellipse in the incremental cost‑effectiveness plane 
(Figures 7.6, 7.7, and 7.8).

Best and Worst Case Scenarios

This form of sensitivity analysis is more formally called “analysis of ex‑
tremes”. A best‑case estimate of cost‑effectiveness would combine the lower 
extreme estimate of costs and the upper extreme estimate of effectiveness. 
Similarly, a worst‑case estimate would combine the upper extreme of costs 
and the lower extreme of effectiveness. Compared to a Monte Carlo simula‑
tion, this type of analysis is crude, but it is useful in some circumstances.
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Figure 7.6. When the probability that the joint distribution of incremental 
cost and benefit extends beyond a single quadrant is negligible (i.e., the 95% 
confidence ellipse lies completely in one of the four quadrants of the incremental 
cost-effectiveness plane), CEAC can assume 4 different configurations: (1) The 
traditional “S”‑shaped curve: The new treatment is more costly and more effective 
(the ellipse is contained in the first quadrant) and CEAC is an increasing function 
of WTP; (2) the ellipse is contained in the second quadrant, i.e., the new treatment 
is dominant (less costly and more effective) and CEAC is constantly equal to 1 
since the entire distribution involves cost‑savings and health gains; (3) and (4) are 
the inverse of case (1) and (2) respectively.

CEAC = Cost-Effectiveness Acceptability Curve; QALY = Quality-Adjusted Life-Year;  
WTP = Willingness To Pay
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Figure 7.7. When the 95% confidence ellipse occupies two quadrants, i.e., it 
crosses either x-axis or y-axis, CEAC can assume 4 less standard configurations: 
(1) The new treatment is more effective but not always less costly and CEAC does 
not start from 0, since confidence ellipse is partially in the dominance quadrant 
and asymptotes to 1 because all the distribution involves health gains; (2) the new 
treatment is cost‑saving, but not always more effective and CEAC starts from 1 
because the entire density involves cost‑savings, but it decreases asymptotically 
to a value lower than 1 because not all of the joint density involves health gains 
(here only 50%); (3) and (4) are the inverse of case (1) and (2) respectively.

CEAC = Cost-Effectiveness Acceptability Curve; QALY = Quality-Adjusted Life-Year

do not fall into the ellipse region can be seen as outliers. The 95% confidence 
ellipse can be seen as the two‑dimensional analogous of the 95% confidence 
interval. Furthermore, the orientation of the ellipse represents graphically 
the correlation between incremental cost and benefit (Figure 7.4).

Another indication of results reliability is given by the Cost‑Effectiveness 
Acceptability Curves (CEACs) [Briggs, 2001], where the WTP for a unit ben‑
efit gained from a hypothetical decision‑maker (i.e., the cost‑effectiveness 
threshold considered as acceptable) is placed on the x‑axis and the probabil‑
ity that an intervention is cost‑effective compared with the alternative, given 
the observed data, on the y‑axis (Figure 7.5).

The CEAC, for each value λ of the WTP, is determined as the proportion of 
simulations in the incremental cost‑effectiveness plane, falling to the south‑
east of a ray through the origin with slope equal to λ [Fenwick, 2004]. The 
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classic illustration of the CEAC is an “S”‑shaped curve starting from the origin 
and asymptotic to 1 (as seen in Figure 7.5), but this is just one of the possible 
shape that CEAC can take. All possible CEAC shapes depend on the configura‑
tion of the 95% confidence ellipse in the incremental cost‑effectiveness plane 
(Figures 7.6, 7.7, and 7.8).

Best and Worst Case Scenarios

This form of sensitivity analysis is more formally called “analysis of ex‑
tremes”. A best‑case estimate of cost‑effectiveness would combine the lower 
extreme estimate of costs and the upper extreme estimate of effectiveness. 
Similarly, a worst‑case estimate would combine the upper extreme of costs 
and the lower extreme of effectiveness. Compared to a Monte Carlo simula‑
tion, this type of analysis is crude, but it is useful in some circumstances.
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Figure 7.6. When the probability that the joint distribution of incremental 
cost and benefit extends beyond a single quadrant is negligible (i.e., the 95% 
confidence ellipse lies completely in one of the four quadrants of the incremental 
cost-effectiveness plane), CEAC can assume 4 different configurations: (1) The 
traditional “S”‑shaped curve: The new treatment is more costly and more effective 
(the ellipse is contained in the first quadrant) and CEAC is an increasing function 
of WTP; (2) the ellipse is contained in the second quadrant, i.e., the new treatment 
is dominant (less costly and more effective) and CEAC is constantly equal to 1 
since the entire distribution involves cost‑savings and health gains; (3) and (4) are 
the inverse of case (1) and (2) respectively.

CEAC = Cost-Effectiveness Acceptability Curve; QALY = Quality-Adjusted Life-Year;  
WTP = Willingness To Pay
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Figure 7.7. When the 95% confidence ellipse occupies two quadrants, i.e., it 
crosses either x-axis or y-axis, CEAC can assume 4 less standard configurations: 
(1) The new treatment is more effective but not always less costly and CEAC does 
not start from 0, since confidence ellipse is partially in the dominance quadrant 
and asymptotes to 1 because all the distribution involves health gains; (2) the new 
treatment is cost‑saving, but not always more effective and CEAC starts from 1 
because the entire density involves cost‑savings, but it decreases asymptotically 
to a value lower than 1 because not all of the joint density involves health gains 
(here only 50%); (3) and (4) are the inverse of case (1) and (2) respectively.

CEAC = Cost-Effectiveness Acceptability Curve; QALY = Quality-Adjusted Life-Year
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7.5 Conclusions: Evaluating Pharmacoeconomic 
Studies

The established standard for assessing any published study is that sufficient 
information should be presented for a peer researcher to be able to repeat the 
study (and get the same answer). In the case of a cost‑effectiveness analysis, 
it means that it should be completely described in the text and that all study 
variables and information sources should be reported.

Many published cost‑effectiveness analyses are black boxes that are difficult 
for the average reader to assess, let alone reproduce; in such circumstances, 
the credibility of the researchers is important. Guidelines or checklists can 
be useful aids in assessing studies. Guidelines for evaluating pharmacoeco‑
nomic studies have been presented by university researchers [Anonymous, 
1995], the Pharmaceutical Research and Manufacturers of America [Clemens, 
1995], and state governments [Torrance, 1996]. In addition to these, criteria 
for assessing the conduct and reporting of various kinds of studies have been 
developed. The Users’ Guides to the medical literature series published in 
JAMA includes articles on the assessment of economic analysis [Drummond, 
1997], decision analysis [Richardson, 1995a; Richardson, 1995b; O’Brien, 1997; 
Naylor, 1996], health‑related quality of life/outcomes research [Guyatt, 1997; 
Anonymous, 1995; Hartmaier, 1995], and systematic reviews [Oxman, 1994]. 
There are also published criteria for the reporting of clinical trials (CONSORT, 
2010) [Schulz, 2010] and for writing manuscripts of different types [Inter‑
national Committee of Medical Journal Editors, 2022]. Recently, also several 
task force of the International Society for Pharmacoeconomics and Outcomes 
Research (ISPOR) set up a series of Good Practice for Outcomes Research to 
consolidate the knowledge on economic appraisal and to provide recommen‑
dations to optimize the reporting of health economic evaluations [Husereau, 
2022].
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Figure 7.8. If the confidence ellipse cover 3 or 4 quadrants, the corresponding 
CEAC depends on the quadrant mostly occupied by the joint distribution: (1) if the 
ellipse is mainly in the first quadrant (more costly, more effective), the CEAC does 
not start from zero (as case 1 in Figure 7.5) but does not asymptote to 1 because 
not all of the joint distribution involves health gains, however the function is 
strictly increasing; (2) if the ellipse is mainly in the second quadrant (less costly, 
more effective), as in case (1) CEAC does not start from zero and is not asymptotic 
to 1, however, the CEAC is not strictly an increasing function, due to the position 
of the joint distribution in the first and third quadrants (as the WTP increases 
the joint distribution in the first quadrant is included as cost-effective before the 
joint distribution in the third quadrant is excluded as no longer cost‑effective, 
and the CEAC rises before falling); (3) and (4) are the inverse of case (1) and (2) 
respectively.

CEAC = Cost-Effectiveness Acceptability Curve; QALY = Quality-Adjusted Life-Year;  
WTP = Willingness To Pay

Threshold Analysis

Threshold analysis is a modification of one‑way sensitivity analysis. Instead 
of a single variable being varied throughout its range of likely values, it is 
varied with the purpose of finding the threshold at which the decision alter‑
natives have the same expected value. The threshold is also called the “break‑
even point”.
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7.5 Conclusions: Evaluating Pharmacoeconomic 
Studies

The established standard for assessing any published study is that sufficient 
information should be presented for a peer researcher to be able to repeat the 
study (and get the same answer). In the case of a cost‑effectiveness analysis, 
it means that it should be completely described in the text and that all study 
variables and information sources should be reported.

Many published cost‑effectiveness analyses are black boxes that are difficult 
for the average reader to assess, let alone reproduce; in such circumstances, 
the credibility of the researchers is important. Guidelines or checklists can 
be useful aids in assessing studies. Guidelines for evaluating pharmacoeco‑
nomic studies have been presented by university researchers [Anonymous, 
1995], the Pharmaceutical Research and Manufacturers of America [Clemens, 
1995], and state governments [Torrance, 1996]. In addition to these, criteria 
for assessing the conduct and reporting of various kinds of studies have been 
developed. The Users’ Guides to the medical literature series published in 
JAMA includes articles on the assessment of economic analysis [Drummond, 
1997], decision analysis [Richardson, 1995a; Richardson, 1995b; O’Brien, 1997; 
Naylor, 1996], health‑related quality of life/outcomes research [Guyatt, 1997; 
Anonymous, 1995; Hartmaier, 1995], and systematic reviews [Oxman, 1994]. 
There are also published criteria for the reporting of clinical trials (CONSORT, 
2010) [Schulz, 2010] and for writing manuscripts of different types [Inter‑
national Committee of Medical Journal Editors, 2022]. Recently, also several 
task force of the International Society for Pharmacoeconomics and Outcomes 
Research (ISPOR) set up a series of Good Practice for Outcomes Research to 
consolidate the knowledge on economic appraisal and to provide recommen‑
dations to optimize the reporting of health economic evaluations [Husereau, 
2022].
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Figure 7.8. If the confidence ellipse cover 3 or 4 quadrants, the corresponding 
CEAC depends on the quadrant mostly occupied by the joint distribution: (1) if the 
ellipse is mainly in the first quadrant (more costly, more effective), the CEAC does 
not start from zero (as case 1 in Figure 7.5) but does not asymptote to 1 because 
not all of the joint distribution involves health gains, however the function is 
strictly increasing; (2) if the ellipse is mainly in the second quadrant (less costly, 
more effective), as in case (1) CEAC does not start from zero and is not asymptotic 
to 1, however, the CEAC is not strictly an increasing function, due to the position 
of the joint distribution in the first and third quadrants (as the WTP increases 
the joint distribution in the first quadrant is included as cost-effective before the 
joint distribution in the third quadrant is excluded as no longer cost‑effective, 
and the CEAC rises before falling); (3) and (4) are the inverse of case (1) and (2) 
respectively.

CEAC = Cost-Effectiveness Acceptability Curve; QALY = Quality-Adjusted Life-Year;  
WTP = Willingness To Pay
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Questions

1. Tick the correct sentence
A. Delphi panels are a particular type of experimental studies
B. Cost‑utility and cost‑effectiveness analyses are synonyms
C. Performing an ad hoc study design is one of the methods used in pharma‑

coeconomics to find answers
D. None of the answers are correct

2. Tick the correct sentence
A. Cross‑sectional studies are neither prospective nor retrospective
B. Experimental studies may be retrospective or prospective
C. Observational studies may experimental or cross‑sectional
D. Longitudinal studies analyze a point in time

3. Tick all that apply
A. The U.S. state and federal governments make available basic demo‑

graphic information
B. The Census Bureau publishes past and projected population demograph‑

ic data
C. The National Center for Health Statistics also collects and makes avail‑

able ongoing national survey data
D. The results of several studies can be combined in meta‑analyses, system‑

atic reviews, or network meta‑analyses

4. Tick all that apply to meta‑analyses
A. Meta‑analyses may contain systematic reviews
B. A meta‑analysis is the statistical pooling of data from several studies
C. Fixed‑ and random‑effect models may be used to combine the results 

obtained by meta‑analyses
D. Fixed‑effect models are adopted when there are two sources of avail‑

ability

5. Tick the correct answer
A. Cochrane Database of Systematic Reviews is an evidence‑based mini‑

mum set of items used for reporting systematic reviews and meta‑anal‑
yses
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B. PROSPERO is an evidence‑based minimum set of items used for report‑
ing systematic reviews and meta‑analyses

C. One of the most useful sources for meta‑analyses of trials evaluating the 
efficacy of treatments is the Cochrane Database of Systematic Reviews

D. One of the most useful sources for meta‑analyses of trials evaluating the 
efficacy of treatments is PRISMA

6. Tick all that apply to network meta‑analyses
A. They allow to combine trials comparing different sets of treatments and 

form a network of evidence within a single analysis
B. Their validity is conditional to the following assumptions: homogeneity, 

transitivity, and consistency
C. Their relevance in pharmacoeconomics is related to the possibility to 

inform simulation modeling about treatment comparisons that have not 
been sufficiently studied in clinical trials

D. They consider only RCTs conducted to investigate the same direct com‑
parison

7. Tick all that apply
A. In the USA health system, the claims are the reimbursement requests to 

Health Maintenance Organizations made by providers such as hospitals, 
pharmacies, and healthcare professionals

B. Diagnoses are encoded by NDCs
C. DRGs are used in the health systems all over the world
D. The exact nature of any procedure performed by a physician is docu‑

mented in terms of a CPT code

8. Tick all that apply
A. Classical statistics is based on hypothesis testing
B. In classical statistics, if the probability that the observations would arise 

under the null hypothesis is above an arbitrary threshold (most often 1 
in 20, or 0.05), the null hypothesis is rejected

C. Bayesian analysis allows the calculation of conditional probabilities
D. Hypothesis testing is very useful in decision analysis, where we need to 

know the probability of a certain event occurring under a certain set of 
circumstances
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9. Tick the correct answer
A. Systematic error is variability in the result caused by random or unpre‑

dictable variability in the factors determining the result
B. Random error is a bias in the result caused by nonrandom variability in 

these factors
C. The word “bias” requires a conscious or unconscious human motivation 

to alter the results
D. The word “error” does not imply that a preventable mistake has been 

made

10. Tick all that apply to randomization
A. Randomization may be applied to reduce selection bias in subjects en‑

tering the study
B. Simple randomization is recommended for RCTs enrolling less than 200 

subjects
C. Blocked randomization and adaptive biased‑coin randomization are 

subtypes of restricted randomization
D. The most used randomizations are covariate‑adaptive randomization 

and response‑adaptive randomization

11. Tick all that apply to propensity scoring
A. The propensity score is based on 4 assumptions
B. When these assumptions are satisfied, the treatment assignment is said 

to be strongly ignorable
C. The conditional independence assumption is crucial for correctly iden‑

tifying the impact of the program
D. The propensity score is the probability that a subject will be assigned to 

group B rather than group A based on a composite of observable deter‑
mining characteristics

12. Tick all that apply to sensitivity analyses
A. In simple sensitivity analysis, all the study variables are varied over the 

range of likely values
B. In two‑way sensitivity analysis, the effects of varying two variables si‑

multaneously are computed
C. Results of one‑way analysis can be represented by a tornado diagram
D. If the variables are independent, a series of one‑way sensitivities is in‑

formative
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13. Tick all that apply to probabilistic analyses
A. Monte Carlo simulation allows to take into account five levels of uncer‑

tainty
B. Results of probabilistic analysis can be represented by a scatterplot
C. In CEACs, the willingness to pay for a unit benefit gained from a hypo‑

thetical decision‑maker is placed on the y‑axis and the probability that 
an intervention is cost‑effective compared with the alternative, given 
the observed data, on the x‑axis

D. 95% confidence ellipse represents the region in the incremental cost‑ef‑
fectiveness plane with a 95% probability of containing the mean incre‑
mental cost and incremental benefit

Answers

1. C
2. A
3. A, B, C, D
4. B, C
5. C
6. A, B, C
7. A, D
8. A, C
9. D
10. A, C
11. B, C, D
12. B, C, D
13. B, D
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