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Abstract

Two types of simulation can be used in a model: cohort or patient-level simulation. 
In the latter, each patient has a set of characteristics and a number of iterations is 
run to calculate the outcomes.
The decision analysis usually follows a 5-step process: problem conceptualization; 
model conceptualization; model parameter estimation; run the model and 
interpretation; sensitivity analysis, transparency, and validation.
A step that sometimes is undertaken before building a detailed decision tree is 
drawing an influence diagram containing decision and chance elements and outcomes. 
A particular model is generally used in case of diseases characterized by a gradual 
progression: Markov model. It considers several health states and transitions, to 
which probabilities are assigned. Time is divided into a series of sequential cycles; 
within each cycle, an individual must be in one state; transitions between the 
states occur at the end of each cycle.
Partitioned survival models are characterized by a series of health states: The 
proportion of patients in each health state at each time point does not depend 
on transition probabilities, but is determined by a set of non-mutually exclusive 
survival curves.
Discrete-event simulations are characterized by events that occur at an instant 
in time, resulting in a change of state in the system. The system is a chronological 
sequence of events.
In the Discretely Integrated Condition Event (DICE) model, diseases can assume 
different levels over time and patients have different conditions varying over 
time. Events occurring at a particular time point can change the disease level or 
affect the occurrence of other events. The levels of conditions may change the 
probability of an event or its consequences.
In agent-based models, individuals (agents) do not move between compartments, 
but change their internal state based on their interactions. Agents are 
characterized by activity, autonomy, and heterogeneity. Agents are active, while 
the environment (stage for agents’ behaviors) is passive.
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4.1 Introduction

Modeling is a tool for expressing the known, observed, or expected reality 
in mathematical terms allowing to simulate or estimate various scenarios and 
predict the future with a certain level of accuracy [OHE briefing]. The use of a 
mathematical model has several advantages:

1. A model can generalize data observed in a specific context (e.g., a RCT) 
to real-life or to a different geographic area;

2. A model can project data over a limited time window (e.g., fitting a para-
metric curve over the overall survival Kaplan-Meier curve);

3. A model can correlate the primary outcome of an RCT (e.g., the progres-
sion-free survival) with a more important clinical outcome (e.g., overall 
mortality).

On the contrary, some limitations should be highlighted: A model is a sim-
plification of a real problem, thus some assumptions are necessary. As it is 
not an experimental study, model results should be validated using external 
sources.

As the use of models to inform policy decision about the use of health tech-
nologies has been increasing, the range of modeling techniques has advanced 
substantially [Caro, 2012]. The relative simplicity of cohort-based models 
is still an attraction for many modelers and decision makers; nevertheless, 
there are situations when the decision problem demands taking extensive 
history into account and patient-level simulation methods are required (see 
next section).

A major quandary in modeling is the choice of technique that will be used to 
structure and analyze the model. Many techniques and variations are avail-
able and, with sufficient effort, most problems can be structured in almost 
any of the techniques [Roberts, 2012]. However, this does not mean that the 
techniques are interchangeable, but the choice should be made carefully. 
Indeed, there is no reason to treat these as mutually exclusive alternatives: 
Hybrid models with some components from decision trees and other compo-
nents from Markov models, for example, can be a very flexible and accurate 
approach [Caro, 2012]. At the same time, overly complex models should be 
avoided, if a simpler one accurately reflects all aspects of the decision prob-
lem.
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4.2 Microsimulation or Cohort Modeling?

When we start to build a model, we have to decide if we want to simulate a 
cohort of patients globally or each patient individually [Brennan, 2006].

In the first approach, called “cohort model”, the experience of each patient 
is not considered in detail but only the proportions of a population undergo-
ing different health states or events is examined, e.g., “after one year of treat-
ment 80% of patients are in remission”. The cohort is considered as an aver-

Cohort model Microsimulation

Easier to develop, less data 
intensive, and faster in 
computation

Time required for microsimulation runs, 
microsimulation generates stochastic uncertainty; 
many individual patients should be simulated to 
ensure expected values are stable

Allows almost instantaneous 
deterministic analysis and 
easy probabilistic analysis of 
parameter uncertainty

Deterministic sensitivity analyses require 
complete microsimulation runs while it could 
be computationally problematic to combine 
microsimulation with probabilistic sensitivity analysis 
(each iteration of probabilistic analysis must be 
replicated for each individual)

No memory of previous events 
since only the mean behavior of 
the cohort is simulated; it may 
compromise validity, especially 
in chronic disease progression 
with multiple lines of therapy

Model has “memory” because the path of each 
simulated individual is tracked; model switching 
through multiple lines of therapy can be easily 
simulated

Limited ability to model cohort 
heterogeneity*

Capturing heterogeneities, mimicking disease 
progression, and predicting clinical outcomes (but 
computational expensive)

Average characteristics for 
all cohort: 80% of patients in 
remission after one year, mean 
weight 70 kg

Can use empirical data or statistical distributions of 
individual subjects’ baseline characteristics: After one 
year the probability to be in remission is 80% (i.e., the 
remission status is modeled as a Bernoulli variable 
with parameter 0.8), the weight for each patient is 
sampled from a statistical distribution (e.g., normal) 
with mean 70 kg and standard deviation 15

The model can predict only the 
mean behavior of the cohort, 
while extreme results (outliers) 
cannot be predicted

Complex outcomes can be calculated also in the 
base analysis (mean, median, standard deviation, 
interquantile range)

Table 4.1. Comparison between cohort model and microsimulation.

*Subgroups can be used to model heterogeneity, but only until the variety and level of patients’ 
characteristics are few, as the number of subgroups increases exponentially
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age entity with average characteristics, e.g., “60% are male” or “mean weight 
is 70 kg”. In order to model a more realistic and heterogeneous population, 
subgroups are often considered to refine the analysis. The cohort is split into 
several subcohorts, characterized for example by age (older and younger 
than 65 years), prior disease course (presence of a complication or not), health 
behaviors (smokers vs. non-smokers), comorbidities (patients with and with-
out diabetes), genetic predisposition, or family history.

The second approach is called “microsimulation” or “patient-level simula-
tion”; each patient is created with a proper set of characteristics (sex, age, 
weight, events predisposition) and his/her disease history is evaluated and 
recorded until the end of the simulation. The process is then replicated for a 
suitable number of iterations (in general between 1,000 and 10,000) and the 
resulting outcomes are calculated as the mean of the outcomes of each pa-
tient.

Table 4.1 shows the generic differences between a basic cohort model and 
a microsimulation. However, it should be kept in mind that several limita-
tions of cohort model may be overcome by increasing the complexity and 
introducing subgroups. Anyhow, the complexity that should be added to a 
cohort model to overcome its limitations may be greater than the complexity 
of microsimulations.

Example: Microsimulation Model in HIV

A patient-level simulation model was developed to evaluate the cost-ef-
fectiveness of different Highly Active AntiRetroviral Therapies (HAARTs) for 
the treatment of HIV patients in Italy [Pradelli, 2017]. The microsimulation 
approach has been chosen because the Markovian assumption (i.e., that the 
future position is entirely dependent only on the current position) was con-
sidered too restrictive. Specifically:

 • All the treatment pathways should be recorded for each patient because 
future therapy was a function of the previous therapies, the classes of 
HAART which a patient is intolerant to, and the classes of HAART which 
a patient is resistant to;

 • CD4 count at any given time was a function of the time patients have 
been virally suppressed and at what point in time they have been virally 
suppressed;

 • Viral rebound depends on the number of times the patient has failed 
previously due to resistance;
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 • The rate of comorbidities (cardiovascular disease, chronic kidney dis-
ease, diabetes, and hypertension) was simulated using a series of multi-
variate linear regressions involving as covariates baseline characteris-
tics, HIV treatment history, and CD4 evolution.

4.3 Steps in Decision Analysis

While the process may be broken down in a number of different ways, we 
will follow previous Authors and describe a decision analysis in terms of five 
steps [Roberts, 2012; Briggs, 2012; Eddy, 2012]:

 • Problem conceptualization;
 • Model conceptualization;
 • Model parameter estimation;
 • Run the model and interpretation;
 • Sensitivity analysis, transparency, and validation.

Example: How to Develop a Model for Emergency 
Contraception and Pregnancy?

National survey data for 1994 indicate that 49% of all pregnancies were un-
intended and 54% of the unintended pregnancies ended in abortion [Hen-
shaw, 1998]. About half of the women who unintentionally became pregnant 
had been using a regular method of contraception. Emergency contraception 
can prevent pregnancy if taken within 72 hours of unprotected sex. We can 
explore the consequences of a decision whether or not to use emergency 
contraception using decision analysis. If emergency contraception is used, 
the probability of pregnancy is reduced (but not eliminated). If pregnancy 
does occur, a predictable proportion of women will choose to terminate the 
pregnancy. Some women who continue their pregnancies will miscarry. For 
the sake of simplicity, we shall ignore the effects of nausea following the use 
of emergency contraception, and complications such as ectopic pregnancies.

Problem Conceptualization

The first step in a decision analysis is to identify the alternative courses 
of action. In the example we are using, the decision is whether or not to use 
emergency contraception following unprotected sex. The consequences of 
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interest are the numbers of unwanted pregnancies, or, more specifically, the 
number of pregnancy terminations and live births that would be avoided 
through the use of emergency contraception. The endpoints of the analysis, 
therefore, are pregnancy terminations and live births. The time horizon will 
be limited to an episode of unprotected sex and its unintended consequences, 
i.e., nine months. The perspective is that of the society.

Influence Diagrams

It is sometimes useful to draw an influence diagram before constructing a 
detailed decision tree. An influence diagram makes specific the decision to be 
taken, the outcome of interest, and the chance elements that influence the 
outcome. Figure 4.1 shows an influence diagram corresponding to the deci-
sion tree in Figure 4.5.

The only outcome of interest in Figure 4.1 is live births following unpro-
tected sex (induced abortion was also an endpoint in the decision analysis 
shown in Figure 4.1).

The outcome is affected by the chance occurrences of pregnancy, induced 
abortion, and spontaneous abortion. The decision, chance elements, and out-
come are presented as a square, circles, and a lozenge shape, respectively.

Model Conceptualization

The appropriate model type is determined by purpose, level of detail, and 
complexity. In this example, it was decided to use a decision tree due to the 
limited time horizon (an episode of unprotect sex and its consequences, i.e., 

Birth

EC Spontaneous abortion

Pregnancy Induced abortion

Figure 4.1. Influence diagram. This diagram represents the decision element and 
chance elements influencing the outcome of unwanted birth.

EC = Emergency Contraception
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nine months). The tree begins with the decision node and branches repre-
senting the alternative courses of action. Here, the decision is to use or not to 
use emergency contraception following unprotected sex (Figure 4.2).

Following the use (or not) of emergency contraception, pregnancy may or 
may not occur. A chance node reflecting these alternative outcomes is added 
to each branch emanating from the decision node (Figure 4.3).

If pregnancy occurs, some women opt for termination and others to contin-
ue their pregnancy to term. While for an individual woman this is a decision 
that must be made, from the perspective of an observer of a population of 
women, a measurable proportion of women will choose one option over the 
other. This proportion might vary according to the composition of the popu-
lation of women and other factors. The node branching to either pregnancy 
termination or continuation is thus a chance node.

Do not use EC

Unprotected sex

Use EC

Figure 4.2. Partial decision tree with decision node. The decision is whether or not 
to use emergency contraception following unprotected sex.

EC = emergency contraception

Do not use EC

Unprotected sex

Use EC

Pregnant

Not pregnant

Pregnant

Not pregnant

Figure 4.3. Partial decision tree with chance nodes. Chance nodes reflect the 
likelihood of pregnancy following unprotected sex.

EC = Emergency Contraception
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A certain proportion of women continuing their pregnancies undergo spon-
taneous abortion; this is also reflected in a chance node. The branches now in 
the model lead to the endpoints that were decided on in Step 1—pregnancy 
termination, live birth, and no pregnancy. The last step in creating the deci-
sion tree, therefore, is to add the terminal nodes (Figure 4.4).

The decision tree describing the problem we identified and bounded in Step 
1 is now complete.

Model Parameter Estimation

In the case of the decision tree in Figure 4.4, the information sought is a 
probability value for each chance node. The probability estimates are dis-
played beneath the branches of the decision tree, as seen in Figure 4.5.

In Figure 4.5, the probabilities of conception with and without emergency 
contraception are taken from a clinical trial of emergency contraception ver-

Termination

No pregnancy

Live birth

No pregnancy

No pregnancy

Live birth

No pregnancy

Termination

Spontaneous
abortion

Induced abortion

Continue
pregnancy

Continue
pregnancy

Pregnant

Not pregnant

Spontaneous
abortion

Induced abortion

Continue
pregnancy

Continue
pregnancy

Pregnant

Not pregnant

Use EC

Do not 
use EC

Unprotected
sex

Figure 4.4. Complete decision tree for the decision of whether to use emergency 
contraception following unprotected sex.

EC = Emergency Contraception

Termination

No pregnancy

Live birth

No pregnancy

No pregnancy

Live birth

No pregnancy

Termination

Spontaneous
abortion

Induced abortion

Continue
pregnancy

Continue
pregnancy

Pregnant

Not pregnant

Spontaneous
abortion

Induced abortion

Continue
pregnancy

Continue
pregnancy

Pregnant

Not pregnant

Use EC

Do not 
use EC

Unprotected
sex

0.46

0.23

0.77

0.23

0.77

0.075

0.925

0.01875

0.98125

0.54

0.46

0.54

Figure 4.5. Decision tree (see Figure 4.4) with probabilities added.

EC = Emergency Contraception
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sus a control group without emergency contraception. The probabilities of 
induced and spontaneous abortion are obtained from state statistics [Mar-
ciante, 2001]. A more extensive description of information sources is given 
in Chapter 7.

Run the Model and Interpretation

We will analyze the tree by calculating the probability of reaching the out-
come represented by each of the terminal nodes. This is done by tracing the 
branches from each terminal node backwards to the beginning of the tree; 
the probabilities along these branches are multiplied together to produce 
the probability of the outcome. These calculations can be performed using a 
spreadsheet. The spreadsheet has a row for each terminal node and a column 
for each chance node plus a column for the calculated probability of the out-
come.

A certain proportion of women continuing their pregnancies undergo spon-
taneous abortion; this is also reflected in a chance node. The branches now in 
the model lead to the endpoints that were decided on in Step 1—pregnancy 
termination, live birth, and no pregnancy. The last step in creating the deci-
sion tree, therefore, is to add the terminal nodes (Figure 4.4).

The decision tree describing the problem we identified and bounded in Step 
1 is now complete.

Model Parameter Estimation

In the case of the decision tree in Figure 4.4, the information sought is a 
probability value for each chance node. The probability estimates are dis-
played beneath the branches of the decision tree, as seen in Figure 4.5.

In Figure 4.5, the probabilities of conception with and without emergency 
contraception are taken from a clinical trial of emergency contraception ver-
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pregnancy terminations and unplanned births) is 0.0164 if emergency contra-
ception is used and 0.0657 if it is not (Table 4.2).

The consequences, in terms of induced abortions and unplanned births, of 
the decision to use or not to use emergency contraception for a hypothetical 
population of 10,000 women are shown in Table 4.3. The use of emergency 
contraception would prevent 259 induced abortions and 234 unplanned 
births per 10,000 women who had had unprotected sex.

Sensitivity Analysis, Transparency, and Validation

Any measurement should be expressed in terms of a point estimate and an 
indication of its reliability. For instance, in descriptive statistics a mean (point 
estimate) and 95% confidence interval may be provided. The decision analysis 
described above has yielded a point estimate of the number of unintended 
pregnancies prevented by emergency contraception. The reliability of such a 
point estimate is made difficult to calculate by the (usually) large number of 
probabilities involved in the model. A point estimate was used for each of the 
probabilities in the model, but of course there is a range of likely values for 
each of the probabilities.

Sensitivity analysis determines the effect on the result of varying the prob-
ability estimates through the range of their possible or likely values. In a one-
way sensitivity analysis, the probabilities at each chance node in the deci-
sion tree are varied across their range of values one at a time. This process 
determines the sensitivity of the results to changes in the assumptions in the 
model and can identify the most critical assumptions in the model, i.e., those 

Decision

Probability

Pregnancy
Induced 
abortion

Spontaneous 
abortion

Outcome

EC 0.01875 0.46 0.0086 Termination

EC 0.01875 0.54 0.23 0.0023 No pregnancy

EC 0.01875 0.54 0.77 0.0078 Unplanned birth

EC 0.98125 0.9813 No pregnancy

0.0164 SUM: Unwanted 
pregnancy*

No EC 0.075 0.46 0.0345 Termination

No EC 0.075 0.54 0.23 0.0093 No pregnancy

No EC 0.075 0.54 0.77 0.0312 Unplanned birth

No EC 0.925 0.9250 No pregnancy

0.0657 SUM: Unwanted 
pregnancy*

Table 4.2. Analysis of decision to use emergency contraception (EC). Analysis of 
the decision tree shown in Figure 4.5 (see text).

* Sum of probabilities of pregnancy terminations and unplanned births. The value is 1 minus 
the sum of probabilities of “no pregnancy”

Induced abortions Unplanned births

EC 86 78

No EC 345 312

Difference -259 -234

Table 4.3. Outcomes of decision to use emergency contraception (EC) per 10,000 
women.

Example

In our decision analysis of the use of emergency contraception, the point 
estimate of the probability of spontaneous abortion was 0.23. The range of 
values for this probability is 0.17-0.29 [Marciante, 2001]. Inspection of the 
decision tree shows that changing the probability of spontaneous abortion does 
not affect the number of induced abortions but does affect the number of live 
births. Substituting first the upper limit estimate (0.29) and then the lower limit 
estimate (0.17) for the value 0.23 used in the initial calculation, we find that the 
difference in the number of unplanned births (without emergency contraception 
minus with emergency contraception) varies between 216 and 252 (the point 
estimate was 234). The spontaneous abortion rate, thus, does not critically 
affect the reduction in the number of unplanned births attributable to the use of 
emergency contraception.

The spreadsheet corresponding to the decision analysis in Figure 4.5 is 
shown in Table 4.2.

The probability of an induced abortion if emergency contraception is used 
(corresponding to the top row of Table 4.2 and the uppermost branch line of 
Figure 4.5) is 0.01875 × 0.46 = 0.0086 (note that there are blank cells in the ta-
ble where a particular chance node does not occur along the branch line). The 
outcome for the second and forth rows of Table 4.2 is the same (“No preg-
nancy”) and the probabilities are added together: the probability of no preg-
nancy if emergency contraception is used is 0.0023 + 0.9813 = 0.9836. Similar-
ly, the probability of “No pregnancy” if emergency contraception is not used 
is: 0.0093 + 0.9250 = 0.9343. The probability of an unwanted pregnancy (sum of 
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pregnancy terminations and unplanned births) is 0.0164 if emergency contra-
ception is used and 0.0657 if it is not (Table 4.2).

The consequences, in terms of induced abortions and unplanned births, of 
the decision to use or not to use emergency contraception for a hypothetical 
population of 10,000 women are shown in Table 4.3. The use of emergency 
contraception would prevent 259 induced abortions and 234 unplanned 
births per 10,000 women who had had unprotected sex.

Sensitivity Analysis, Transparency, and Validation

Any measurement should be expressed in terms of a point estimate and an 
indication of its reliability. For instance, in descriptive statistics a mean (point 
estimate) and 95% confidence interval may be provided. The decision analysis 
described above has yielded a point estimate of the number of unintended 
pregnancies prevented by emergency contraception. The reliability of such a 
point estimate is made difficult to calculate by the (usually) large number of 
probabilities involved in the model. A point estimate was used for each of the 
probabilities in the model, but of course there is a range of likely values for 
each of the probabilities.

Sensitivity analysis determines the effect on the result of varying the prob-
ability estimates through the range of their possible or likely values. In a one-
way sensitivity analysis, the probabilities at each chance node in the deci-
sion tree are varied across their range of values one at a time. This process 
determines the sensitivity of the results to changes in the assumptions in the 
model and can identify the most critical assumptions in the model, i.e., those 

Decision

Probability

Pregnancy
Induced 
abortion

Spontaneous 
abortion

Outcome

EC 0.01875 0.46 0.0086 Termination

EC 0.01875 0.54 0.23 0.0023 No pregnancy

EC 0.01875 0.54 0.77 0.0078 Unplanned birth

EC 0.98125 0.9813 No pregnancy

0.0164 SUM: Unwanted 
pregnancy*

No EC 0.075 0.46 0.0345 Termination

No EC 0.075 0.54 0.23 0.0093 No pregnancy

No EC 0.075 0.54 0.77 0.0312 Unplanned birth

No EC 0.925 0.9250 No pregnancy

0.0657 SUM: Unwanted 
pregnancy*

Table 4.2. Analysis of decision to use emergency contraception (EC). Analysis of 
the decision tree shown in Figure 4.5 (see text).

* Sum of probabilities of pregnancy terminations and unplanned births. The value is 1 minus 
the sum of probabilities of “no pregnancy”

Induced abortions Unplanned births

EC 86 78

No EC 345 312

Difference -259 -234

Table 4.3. Outcomes of decision to use emergency contraception (EC) per 10,000 
women.

Example

In our decision analysis of the use of emergency contraception, the point 
estimate of the probability of spontaneous abortion was 0.23. The range of 
values for this probability is 0.17-0.29 [Marciante, 2001]. Inspection of the 
decision tree shows that changing the probability of spontaneous abortion does 
not affect the number of induced abortions but does affect the number of live 
births. Substituting first the upper limit estimate (0.29) and then the lower limit 
estimate (0.17) for the value 0.23 used in the initial calculation, we find that the 
difference in the number of unplanned births (without emergency contraception 
minus with emergency contraception) varies between 216 and 252 (the point 
estimate was 234). The spontaneous abortion rate, thus, does not critically 
affect the reduction in the number of unplanned births attributable to the use of 
emergency contraception.
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that have the greatest effect on the results. The following is an example of 
one-way sensitivity analysis. Multiway (2- or more) and other forms of sen-
sitivity analysis are discussed below. Sensitivity analysis will be further de-
scribed in Chapter 7.

To increase model transparency, a nontechnical description—including 
model type, intended applications, funding sources, structure, intended uses, 
inputs, outputs, other components that determine function, and their rela-
tionships, data sources, validation methods, results, and limitations—should 
be made available to anyone. In the same way, technical documentation, 
should be made available (openly or under agreements protecting intellec-
tual property). The latter should be written so as to enable expert readers to 
properly evaluate and potentially reproduce the model.

Finally, validation includes:
 • Face validity (experts evaluate model structure, data sources, assump-

tions, and results);
 • Verification or internal validity (check accuracy of coding);
 • Cross validity (comparison of results with other models analyzing the 

same problem);
 • External validity (comparing model results with real-world results); and
 • Predictive validity (comparing model results with prospectively ob-

served events).
The last two are the strongest forms of validation.

4.4 Markov Models

The decision analysis shown in Figure 4.5 represents a single, linear chain of 
events transpiring over a single time period. Some diseases, however, prog-
ress gradually over a period of years, while the risk of the outcome of interest, 
for instance, coronary death, increases with age. Markov analysis is appropri-
ate for such problems.

Markov analyses use tree diagrams similar to those used in simple decision 
analysis. However, the elements of the problem are first mapped out in a Mar-
kov diagram similar to an influence diagram. Figure 4.6 shows a Markov dia-
gram representing the progression of congestive heart failure. The Markov 
model consists of states (ovals) and transitions (arrows).

In Figure 4.6, there are four states: well, early-stage heart failure, late-stage 
heart failure, and dead from heart failure, where early- and late-stage heart 

Dead

NYHA-III/IV

NYHA-I/II

Well

Figure 4.6. Markov transition state diagram for patients with heart failure. 
Markov diagram based on study by van Hout et al. [van Hout, 1993]. For simplicity, 
NYHA classes I and II have been combined, as have NYHA classes III and IV.

NYHA = New York Heart Association class for heart failure
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failure are represented by New York Heart Association (NYHA) class I/II and 
III/IV, respectively. Time is broken down into a series of sequential periods 
or cycles; within each cycle, an individual must be in one of the four states; 
transitions between the states occur at the end of each cycle. Individuals in the 
“well” state can transit into either of the NYHA class states or remain in the 
well state (represented by an arrow exiting from and circling back into the well 
state). Similarly, individuals in the NYHA-I/II state can remain in that state, 
progress into the NYHA-III/IV state, or enter the “dead” state at the end of 
each cycle. Needless to say, individuals cannot exit the dead state. Probabilities 
must be assigned for each transition. Since time is modelled as a series of cycles 
of equal length, the probabilities can be different at each cycle, so that they can 
be made dependent on the age of individuals entering the model. Markov mod-
els in which probabilities are time-dependent are called semi-Markov model 
or Markov process models. Generally, the term “Markov model” indicates a 
cohort simulation; when the model is developed using a microsimulation ap-
proach, the term “individual state-transition model” is preferable.

Example: Markov Model in the Treatment 
of Secondary Hyperparathyroidism

An illustrative example of the application in pharmacoeconomics of a 
probabilistic, patient-level model based on Markov cycles is the economic 
evaluation of cinacalcet in the treatment of Secondary HyperParaThyroidism 
(SHPT) for chronic kidney patients in the Italian context [Eandi, 2010]. In di-
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should be made available (openly or under agreements protecting intellec-
tual property). The latter should be written so as to enable expert readers to 
properly evaluate and potentially reproduce the model.

Finally, validation includes:
 • Face validity (experts evaluate model structure, data sources, assump-

tions, and results);
 • Verification or internal validity (check accuracy of coding);
 • Cross validity (comparison of results with other models analyzing the 

same problem);
 • External validity (comparing model results with real-world results); and
 • Predictive validity (comparing model results with prospectively ob-

served events).
The last two are the strongest forms of validation.

4.4 Markov Models

The decision analysis shown in Figure 4.5 represents a single, linear chain of 
events transpiring over a single time period. Some diseases, however, prog-
ress gradually over a period of years, while the risk of the outcome of interest, 
for instance, coronary death, increases with age. Markov analysis is appropri-
ate for such problems.

Markov analyses use tree diagrams similar to those used in simple decision 
analysis. However, the elements of the problem are first mapped out in a Mar-
kov diagram similar to an influence diagram. Figure 4.6 shows a Markov dia-
gram representing the progression of congestive heart failure. The Markov 
model consists of states (ovals) and transitions (arrows).

In Figure 4.6, there are four states: well, early-stage heart failure, late-stage 
heart failure, and dead from heart failure, where early- and late-stage heart 

Dead

NYHA-III/IV

NYHA-I/II

Well

Figure 4.6. Markov transition state diagram for patients with heart failure. 
Markov diagram based on study by van Hout et al. [van Hout, 1993]. For simplicity, 
NYHA classes I and II have been combined, as have NYHA classes III and IV.

NYHA = New York Heart Association class for heart failure
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alysis patients considered in the study, the standard treatment, consisting of 
D vitamin sterols and phosphate binders, is compared with a new treatment 
where cinacalcet is included. This drug acts as a regulator of levels of plas-
ma ParaThyroid Hormone (PTH), and indirectly of serum calcium (Ca) and 
phosphorus (P), by controlling the parathyroid activity, thus being associated 
with clinical benefit, in terms of CardioVascular (CV) and fracture protec-
tion. However, the cinacalcet regimen is more expensive than standard care 
and this creates the necessity for a comprehensive pharmacoeconomic evalu-
ation about its possible adoption. For this purpose, the novel probabilistic 
model proposed by Eandi et al. [Eandi, 2010] simulates the effect of cinacalcet 
on the variation of PTH, Ca, and P levels on individual patients, and correlates 
these levels with main clinical endpoints like mortality and morbidity resting 
upon published evidence.

The model consists of a decision tree scheme (designed with the TreeAge 
2009 software) with two independent arms representing the standard and 
the cinacalcet treatment course in Markov cycles: SHTP, SHTP with parathy-
roidectomy, and death represent the available states of the Markov chain 
where the main clinical events (CV event, fracture, parathyroidectomy) may 
be experienced. The simulation spans over a time horizon equal to the whole 
patients’ lifetime, divided in 8-weeks cycles. The outcomes chosen to mea-
sure the effectiveness of the cinacalcet and standard treatment are the av-
erage time below the recommended KDOQI range (TiR) of PTH, Ca, P, Ca × P 
[Eknoyan, 2003]: PTH ≤ 300 pg/ml, Ca < 9.5 mg/dl, P < 5.5 mg/dl, and Ca × P 
lower than 55 (mg/dl)2.

At each iteration one patient is created with his/her unique initial baseline 
attributes (gender, initial age, PTH, Ca, P level) and sent to both the standard 
and cinacalcet arm, so that the simulation runs on the very same cohort. Dur-
ing the iteration, patients’ parameters may change in time, thereby affecting 
probabilities and event rates; the short-term variation (weeks) of PTH, Ca, P 
level of generated individuals with respect to the baseline values are assigned 
sampling the results of the European multicenter, randomized, open-label 
OPTIMA study [Messa, 2008] conducted on hemodialysis patients. The mod-
el then associates parameter concentrations to Relative Risk (RR) of events 
(e.g., mortality), also considering the dependence of subsequent events on 
prior event occurrence (in CV hospitalization or fracture) and the correla-
tions between different events (the effect of parathyroidectomy on mortal-
ity and fracture rate). Mortality and morbidity rates are constantly updated 
by updating RR factors, in turn adjusted on current PTH and mineral levels, 
probabilistically sampled for each simulated patient on distributions, and 
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data extracted from literature. Internal and external validation of the model 
performed with data from literature confirms the reliability of the model.

Costs and outcomes predicted by the model, discounted at a 3.5% annual 
rate (Table 4.4) are obtained as summary statistics of 10,000 iterations.

Measure of 
effectiveness (TiR), 
utility (LE, QALE), 

and cost (€)

Cinacalcet group Standard group Differences

Mean (SD) Mean (SD) Mean (SD)

TiR PTH < 300 pg/ml 5.45 (6.61) 0.19 (0.80) 5.26 (6.59)

TiR Ca < 9.5 mg/dl 6.89 (6.81) 3.26 (5.49) 3.63 (6.87)

TiR P < 5.5 mg/dl 5.86 (6.80) 4.16 (5.93) 1.70 (6.66)

TiR Ca x P < 55 (mg/dl)2 6.96 (6.87) 4.60 (6.12) 2.36 (6.58)

TiR all 2.72 (5.57) 0.04 (0.34) 2.68 (5.55)

LE (LYs) 9.15 (6.33) 7.95 (5.9) 1.20 (3.75)

QALE (QALYs) 5.84 (5.04) 4.95 (4.54) 0.89 (2.59)

Costs (€) w/o dialysis 51,756 (52,481) 23,595 (25,142) 29,161 (47,277)

Costs (€) with dialysis 294,273 (210,108) 234,273 (177,400) 60,000 (127,831)

Table 4.4. Effectiveness, utility outcomes, and final discounted costs with 10,000 
iterations, in terms of time in recommended KDOQI range.

LE = Life Expectancy; KDOQI = Kidney Disease Outcomes Quality Initiative; LY = Life-
Years; PTH = Parathyroid Hormone;  
QALE = Quality-Adjusted Life Expectancy; QALY = Quality-Adjusted Life-Year; 
SD = Standard Deviation; TiR = Time in Range

ICER (cost w/o dialysis) ICER (cost with dialysis)

TiR PTH (pts-y) 5,354 11,407

TiR Ca (pts-y) 7,754 16,520

TiR P (pts-y) 16,556 35,275

TiR Ca x P (pts-y) 11,947 25,454

TiR all (pts-y) 10,525 22,425

LE (LY) 23,473 50,012

QALE (QALY) 31,616 67,361

Table 4.5. ICER values calculated for 10,000 iterations according to the various 
possible definitions of effectiveness and utility: Values expressed in Euro versus 
discounted patient-years (for TiR), Life-Years (for LE), or Quality-Adjusted Life-
Years (for QALE).

ICER = Incremental Cost-Effectiveness Ratio; LE = Life Expectancy; LY = Life-Years; 
PTH = Parathyroid Hormone; QALE = Quality-Adjusted Life Expectancy; QALY = Quality-
Adjusted Life-Year; TiR = Time in Range
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The benefit of the health treatment is estimated also in terms of utility: Pre-
dicted Life Expectancy (LE) is weighted by the utility values of end-stage renal 
disease and dialysis (Table 4.4) obtained from published literature [de Wit, 1998].

Finally, in order to decide the possible adoption of the cinacalcet based 
treatment, the Incremental Cost-Effectiveness Ratio (ICER) has been calculat-
ed (Table 4.5). When considering LE, the average ICER of cinacalcet vs. stan-
dard treatment resulted 23,473€/LY, while if considering QALE, the average 
ICER was 31,616€/QALY (Table 4.4).

4.5 Partitioned Survival Models

Similarly to Markov models, Partitioned Survival Models (PSMs) are char-
acterized by a series of health states. However, in PSM the proportion of pa-
tients in each health state at each time point does not depend on transition 
probabilities, but is determined from a set of non-mutually exclusive survival 
curves [Woods, 2017]. The way in which state membership is determined in 
PSM can be illustrated using a model structure commonly applied in econom-
ic evaluation of treatment for advanced or metastatic cancer [Woods, 2020]. 
This model included 3 states: progression-free, progressed (worsening or 
spreading of the cancer), and dead (Figure 4.7 A). The PSM derives state mem-
bership using two survival curves. The Progression-Free Survival (PFS) curve 
describes the time from model entry to exiting the progression-free state via 
progression or death (a composite outcome), whilst the Overall Survival (OS) 
curve describes the time from model entry to death. For each time t of simu-
lation, PFS(t) provides the proportion of patients remaining in the health 
state “progression-free”; 1 – OS(t) is the proportion of dead patients; and the 
difference between OS(t) and PFS(t) provides the proportion of patients who 
are alive but not progression-free (Figure 4.7 B).

The approach can be applied to models with any number of states as long 
as patients only move progressively through health states (i.e., no backward 
transitions, such as from progressed to progression-free, are permitted). 

Generally, survival curves are obtained from clinical trials, while parametric 
models are used to extrapolate beyond the time horizon of the original study.

Example: PSM in Advanced or Unresectable Hepatocellular Carcinoma

We refer to the cost-effectiveness analysis of atezolizumab plus bevaci-
zumab (A + B) in comparison to sorafenib (S) in patients with advanced or 
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Figure 4.7. State transition model (A) in advanced or metastatic cancer and 
determination of state membership (B). Modified from [Woods, 2020].

OS(t) = Overall Survival curve at time t; PFS(t) = Progression-Free Survival curve at time 
t; pp.d = probability of death from the progressed state; ppf.d = probability of death from the 
progression-free state; ppf.p = probability of disease progression observed prior to death in 
a model cycle
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unresectable HepatoCellular Carcinoma (HCC) in Italy [Pradelli, 2022] as an 
example of application of partitioned survival model. Disease evolution was 
modelled using OS and PFS curves estimated from the pivotal trial IMbrave150 
for the clinical follow-up period (median 8.6 months). Subsequently, extrapo-
lation was performed by fitting parametric distributions to the observed time 
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probabilities, but is determined from a set of non-mutually exclusive survival 
curves [Woods, 2017]. The way in which state membership is determined in 
PSM can be illustrated using a model structure commonly applied in econom-
ic evaluation of treatment for advanced or metastatic cancer [Woods, 2020]. 
This model included 3 states: progression-free, progressed (worsening or 
spreading of the cancer), and dead (Figure 4.7 A). The PSM derives state mem-
bership using two survival curves. The Progression-Free Survival (PFS) curve 
describes the time from model entry to exiting the progression-free state via 
progression or death (a composite outcome), whilst the Overall Survival (OS) 
curve describes the time from model entry to death. For each time t of simu-
lation, PFS(t) provides the proportion of patients remaining in the health 
state “progression-free”; 1 – OS(t) is the proportion of dead patients; and the 
difference between OS(t) and PFS(t) provides the proportion of patients who 
are alive but not progression-free (Figure 4.7 B).

The approach can be applied to models with any number of states as long 
as patients only move progressively through health states (i.e., no backward 
transitions, such as from progressed to progression-free, are permitted). 

Generally, survival curves are obtained from clinical trials, while parametric 
models are used to extrapolate beyond the time horizon of the original study.
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to event data, independently for the two treatments compared (Gamma and 
Log-logistic distributions for A + B and Log-normal and Weibull distributions 
for S, respectively, for PFS and OS were used). Cost categories included were: 
Treatment, administration, adverse events management, supportive care, 
post-discontinuation therapies, and terminal care cost. Time spent pre- and 
post-progression was weighted for the utility values derived for the clinical 
trial in order to estimate the total quality of life associated with the two al-
ternatives. Costs and health gains were discounted at an annual 3% rate, ac-
cording to Italian guidelines on health economic evaluation, and a half-cycle 
correction was applied.

A + B is associated with an incremental survival (1.53 LYs), also after weight-
ing for quality of life (1.31 QALYs), when compared with S and incremental 
costs (€ 90,264) are a consequence of longer survival (Table 4.6). The incre-
mental cost-efficacy ratio is about € 60,000 per LY gained, while the incre-
mental analysis for QALY showed a cost/utility ratio of approximately € 
70,000 per QALY gained (Table 4.6), within the threshold for life-extending 
treatments in people with a short life expectancy in Italy.

A + B S
Delta A + B 

vs. S
ICER/ICUR

Total LYs 2.70 1.17 1.53 59,085 €/LY 
gained

In PFS 1.58 0.51

In progression 1.11 0.66

Total QALYs 2.29 0.98 1.31 68,896 €/QALY 
gained

In PFS 1.36 0.43

In progression 0.93 0.55

Overall costs (€) 135,907 45,643 90,264

Treatment 74,413 16,074

Administration 661 0

Adverse events 674 662

Supportive care 1,712 742

Post-discontinuation 55,408 24,937

Terminal care 3,039 3,228

Table 4.6. Summary results.

A = Atezolizumab; B = Bevacizumab; ICER = Incremental Cost-Effectiveness Ratio; 
ICUR = Incremental Cost-Utility Ratio; LY = Life-Years; PFS = Progression-Free Survival; 
QALY = Quality-Adjusted Life-Year;  S = Sorafenib 
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4.6 Discrete-Event Simulation

In Discrete-Event Simulation (DES), the operation of a system is represent-
ed in the form of a chronological sequence of events. Each event occurs at an 
instant in time and results in a change of state in the system [Robinson, 2004].

The development of DES dates back to 1960s and belongs to the field of in-
dustrial engineering. However, ever since applications in healthcare have 
increased [Jacobson, 2006] (e.g., biologic models and physiology, process re-
design and optimization, geographic allocation of resources, trial design, pol-
icy evaluation, survival modeling, and health technology assessments). Key 
points in discrete-event simulation are entities, events, and time:

 • Entities are the objects that can experience the events defining the mod-
el structure (typically patients);

 • Events are defined as things that can happen to an entity during the 
simulation. Events can be, for example, adverse drug reaction, occur-
rence of clinical conditions (e.g., a stroke) or progression of a disease to 
a new stage. Markov states can also be considered as events;

 • Time does not flow continuously but is fixed when an event occurs. 
Events duration is simulated using probabilistic distributions fitted to 
set of real data (if available) or to mean ± SD.

Example: DES Model in TPN

The analysis of effectiveness and cost-effectiveness of supplemental glu-
tamine dipeptide in Total Parenteral Nutrition (TPN) therapy for critically 
ill patients performed by Pradelli et al. [Pradelli, 2012] is a representative 
case of a pharmacoeconomic study where a DES model is developed. Several 
works (cited in [Pradelli, 2012]) show that alanyl-glutamine (Ala-Gln) in TPN 
therapy of critically ill patients reduce mortality, infection rate and shorten 
Intensive Care Unit (ICU) and hospital Lengths Of Stay (LOS) as compared to 
standard TPN regimens. The main aim of the simulation study was to investi-
gate whether the Ala-Gln treatment cost is completely offset by the reduction 
of hospital and medical costs due to improvements in clinical outcomes. This 
evaluation is performed within a DES scheme with a patient-level approach. 
In this approach, every generated individual concurrently follows the clinical 
course of standard and supplemented Ala-Gln TPN treatment experiencing 
common events in each simulation step. The two simulated therapeutic arms 
differ only quantitatively for the probabilities characterizing events occur-
rence and duration. Each patient starts in ICU where he/she may, or may 
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not, develop a new nosocomial infection. In either case, the patient admitted 
to the ICU has three alternative possibilities: death in the ICU, or recovery 
and transfer to general ward, or recovery and discharge home. For patients 
transferred to general ward, there are two possibilities left: recovery and dis-
charge, or death. Death and discharge represent the end of patient treatment. 
The time spent in each treatment arm is not discretized in cycles with fixed 
time intervals valid for the whole patients’ cohort (as in case of Markov cy-
cles), but is handled as a time-to-event, specifically sampled for every patient 
from Weibull distributions fitted to “Progetto Margherita” data, yielding a 
satisfying goodness-of-fit [GIVITI, 2009].

Patient pathways are shown in Figure 4.8: The time spent in each state 
depends on the outcome of the state itself, i.e., patients who die in ICU will 
spend less time in ICU than those who are discharged alive; mathematically, 
LOS in ICU will be sampled from two different distributions.

All the input values of characteristics and probabilities for every generated 
patient were randomly sampled (Monte Carlo method) from mathematical 
distributions fitting data concerning critically ill patients obtained from pub-
lished works: The baseline outcome rates are extracted from 2007 edition of 
“Progetto Margherita” [GIVITI, 2007], that reports data regarding more than 
60,000 inpatients of 200 Italian ICUs, while the efficacy of supplementation 
of Ala-Gln in the standard treatment are extracted from a systematically re-
viewed Bayesian meta-analysis of clinical trials [Pradelli, 2012].

The costs items yielding the overall treatments cost were calculated from 
the perspective of Italian hospital and were determined using various data 
sources actualized to the 2008 values according to the inflation index of ISTAT 
(the Italian National Institute of Statistics). The cost of Ala-Gln was calculated 
for every simulated patient on the basis of his/her body weight assuming a 
dose of 0.5 g/kg/day using the maximum price to Italian hospitals (2,107€/g). 
Body weight and TPN duration were sampled from the population data re-
ported in the trials. Average daily cost to hospital of Italian ICUs (including 
variable, fixed ICU ward costs, and ancillary costs) results equal to €1,289 [Ca-
vallo, 2001], while the average cost in Italian hospital ward is calculated as 
€707.64 [ASSR, 2003]. As for the cost of infections, only the extra anti-infec-
tive treatments cost, i.e., ICU-emerged blood stream infections [Orsi, 2002], is 
calculated (€1,034.6) because the reduction of cost infection in ICU due to the 
use of Ala-Gln is already counted for in the consequent reduction of LOS with 
respect to the standard TPN regimen.

In Table 4.7, the main clinical outcomes and the costs resulting from the 
Monte Carlo model simulation conducted for 10,000 patients are summarized. 
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Figure 4.8. DES diagram based on a cost-effectiveness analysis by Pradelli et al. 
[Pradelli, 2012]. Simulated patients enter the model in the ICU and face three 
alternative outcomes: Transfer to a general ward, discharge directly at home, 
or death in the ICU. Those transferred or treated in the general ward are either 
discharged alive or die during the hospital stay. The latter two determine the end 
of patient treatment.

DES = Discrete-Event Simulation; ICU = Intensive Care Unit; LOS = Length Of Stay

Outcome
Standard TPN

Mean (SD)

Standard +  
Ala-Gln TPN

Mean (SD)

Difference
Mean (SD)

LOS (days/patients) 25.99 (0.26) 24.91 (0.25) -1.08 (0.10)
Deaths/10,000 pts 3,446 (208) 2,460 (159) -986.01 (57.14)
Infections/10,000 pts 1,878 (391) 1,377 (287) 501.41 (106.71)
Overall costs (€/patient) 24,161 (3,523) 23,409 (3,345) -752.08 (307.30)
ICU 12,925.48 

(2,554.33)
11,669.13 
(2,308.10)

-1,256.35 (255.08)

Antibiotics 193.73 (56.81) 142.00 (41.62) -51.72 (15.36)
Supplementation 0 (0) 602.95 (175.79) 602.95 (175.79)
Ward (pre-ICU) 2,905.55 (612.67) 2,905.55 (612.67) 0 (0)
Ward (post-ICU) 8,136.51 

(1,711.83)
8,089.56 

(1,698.92)
-46.95 (65.05)

Overall costs/survivor (€) 36,905 (5,535) 31,061 (4,496) -5,844 (1,162)

Table 4.7. Costs, effectiveness, and cost-effectiveness results for Ala-Gln + TPN 
versus TPN alone in critically ill ICU patients based on model simulation.

ICU = Intensive Care Unit; LOS = Length Of Stay; SD = Standard Deviation; 
TPN = Total Parenteral Nutrition
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not, develop a new nosocomial infection. In either case, the patient admitted 
to the ICU has three alternative possibilities: death in the ICU, or recovery 
and transfer to general ward, or recovery and discharge home. For patients 
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cles), but is handled as a time-to-event, specifically sampled for every patient 
from Weibull distributions fitted to “Progetto Margherita” data, yielding a 
satisfying goodness-of-fit [GIVITI, 2009].

Patient pathways are shown in Figure 4.8: The time spent in each state 
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spend less time in ICU than those who are discharged alive; mathematically, 
LOS in ICU will be sampled from two different distributions.

All the input values of characteristics and probabilities for every generated 
patient were randomly sampled (Monte Carlo method) from mathematical 
distributions fitting data concerning critically ill patients obtained from pub-
lished works: The baseline outcome rates are extracted from 2007 edition of 
“Progetto Margherita” [GIVITI, 2007], that reports data regarding more than 
60,000 inpatients of 200 Italian ICUs, while the efficacy of supplementation 
of Ala-Gln in the standard treatment are extracted from a systematically re-
viewed Bayesian meta-analysis of clinical trials [Pradelli, 2012].

The costs items yielding the overall treatments cost were calculated from 
the perspective of Italian hospital and were determined using various data 
sources actualized to the 2008 values according to the inflation index of ISTAT 
(the Italian National Institute of Statistics). The cost of Ala-Gln was calculated 
for every simulated patient on the basis of his/her body weight assuming a 
dose of 0.5 g/kg/day using the maximum price to Italian hospitals (2,107€/g). 
Body weight and TPN duration were sampled from the population data re-
ported in the trials. Average daily cost to hospital of Italian ICUs (including 
variable, fixed ICU ward costs, and ancillary costs) results equal to €1,289 [Ca-
vallo, 2001], while the average cost in Italian hospital ward is calculated as 
€707.64 [ASSR, 2003]. As for the cost of infections, only the extra anti-infec-
tive treatments cost, i.e., ICU-emerged blood stream infections [Orsi, 2002], is 
calculated (€1,034.6) because the reduction of cost infection in ICU due to the 
use of Ala-Gln is already counted for in the consequent reduction of LOS with 
respect to the standard TPN regimen.

In Table 4.7, the main clinical outcomes and the costs resulting from the 
Monte Carlo model simulation conducted for 10,000 patients are summarized. 
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On average, Ala-Gln-based TPN therapy would prevent more than one-quar-
ter of deaths and infections and reduce the overall mean LOS by 1.1 day, com-
pared with standard TPN. Furthermore, these findings show that the cost of 
Ala-Gln nutrition is more than offset by the reduction of ICU and antibiotic 
costs, resulting in a mean net cost saving of €752 per patient. Therefore, it 
could be concluded that addition of Ala-Gln to standard TPN is expected to 
dominate standard TPN alone, presenting better clinical and economic out-
comes. Internal validation of the model performed with observed clinical 
data strengthen the reliability of the model. The variation of input cost and 
clinical parameters in one-way sensitivity and in scenario analyses tested the 
robustness of the results.

4.7 Discretely Integrated Condition Event Simulation

In a Discretely Integrated Condition Event (DICE) model, the disease evolu-
tion and its management are conceptualized in terms of the conditions that 
patients can be in, integrated with the events they can experience [Caro, 2016].

A condition is something that persists or happens over time and can assume 
different levels, e.g., cancer status (levels: Cured, remission, progressive dis-
ease). Patients’ characteristics are also conditions (sex, age, blood pressure, 
etc.). The sex condition is unchanging, while most of these conditions tend to 
vary over time.

Events are things that happen at particular points in time, e.g., death, de-
tecting cancer progression, hospitalizations, or infections.

Events can initiate/terminate a condition, change its level, or affect the oc-
currence of other events. Conversely, the levels of conditions can change the 
likelihood of an event or its consequences. In reality, such interaction occurs 
continuously over time. For simplicity, in the majority of pharmacoeconomic 
evaluation, conditions and events are integrated at the discrete points in time 
when the events occur.

The design of the DICE model involves three steps:
1. Each component of the model is classified as an event or a condition, 

depending on whether it persists over time;
2. Each condition is specified together with its possible levels, and how 

these might change overtime;
3. Each event is described in terms of time of occurrence and its conse-

quences.
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Example: How to Develop a DICE Model in Cancer

We refer to the toy example developed by Caro [Caro, 2016]. Suppose to be 
interested in assessing the efficacy of a new treatment for a particular cancer 
with a poor prognosis that leads to premature death. Age, sex, and specific 
biomarker levels are included as patients’ characteristics as strong predic-
tors of both Progression-Free Survival (PFS) and post-progression survival. 

Event name: DEATH
Consequences and conditions:
• Update cancer status, 

utility
• Set time to end = now
Change to outputs:
• Count death

Event name: END
Consequences and conditions:
• Report all results
Change to outputs:
• Update QALYs and 

treatment cost

Event name: START
Consequences and conditions:
• Assign treatment
• Set hazard ratio of 

progression1

• Assign utility (according to 
sex and age)

• Select time to progression2

• Check time horizon
Change to outputs: 
• Initialize values

Event name: PROGRESS
Consequences and conditions:
• Update cancer status, 

utility
• Assign biomarker level
• Reset hazard ratio of death2

• Select time to death2

• Check time horizon
Change to outputs: 
• Update QALYs and 

treatment cost
• Count progression

Figure 4.9. Illustrative representation of the events considered in the simplified 
DICE example (the boxes) and the connections among events (the arrows).

DICE = Discretely Integrated Condition Event; QALY = Quality-Adjuted Life-Year; 
RCT = Randomized Clinical Trial;
1 0.42 for antineoplastic intervention, 1 for standard of care according to RCT results
2 Values are sampled from specific Weibull distributions adjusted for sex, age, biomarker, 

and treatment effect
3 0.73 for antineoplastic intervention, 1 for standard of care according to RCT results
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Efficacy evidence for the new antineoplastic intervention, compared with 
standard of care, comes from a well-designed Randomized Clinical Trial 
(RCT) in terms of increasing in the time to remission and overall survival 
(Figure 4.9).

The simplified structure of the model is illustrated in Figure 4.9.

4.8 Agent-Based Models

In an individual or Agent-Based (AB) model the status of each individual is 
explicitly tracked over time. In this case, individuals are discrete entities who 
do not move between compartments, but rather change their internal state 
(e.g., susceptible, infected) on the ground of their interactions. Furthermore, 
AB models can incorporate population heterogeneity quite easily. Finally, 
they are flexible enough to assess complex interventions.

Individuals evolving in an AB model are called “agents”. An agent is defined 
by the following characteristics [Niazi, 2011]:

 • Activity: Each agent independently acts following the rules assigned in 
the simulation and its own pre-programmed behavior. Agents may in-
teract or exchange information with other agents; these interactions 
may have particular effects on the agent, including its destruction or 
change in goal-seeking behavior;

 • Autonomy: Each agent can make independent decisions in accordance 
with rules assigned in the simulation;

 • Heterogeneity: Generally, each agent is created as a member of a limited 
set of common templates, but it develops individuality through interac-
tions.

Stage for agents’ behaviors is called “environment”. Environment may 
change dynamically according to the actions of the agents, but these changes 
occur passively, rather than in the active fashion of agent evolution in time. 
The state of the environment evolves dynamically, but only in response to 
the actions of the agents; in sum, agents are active while the environment is 
passive.

Agent-based modeling allows to incorporate and evaluate complex be-
haviors and interactions and, as such, permits to effectively model com-
plex phenomena [Miller, 2007]. Global system evolution is not modeled a 
priori, but depends on a “few” rules that are assigned to each agent (Figure 
4.10).

+ =

What do you 
do by yourself

How to behave
when meeting

???

Global system
behavior

Figure 4.10. Illustrative representation of an AB model: Rules of conduct of a 
single agent when alone and when interacting with other agents that are assigned 
a priori (but may change due to interaction or learning). The global behavior of the 
whole population (framed network with dots corresponding to agents) naturally 
arises without external constraints.
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Example: AB Model in Screening Program

This case study evaluated the impact of screening for hypothetical infec-
tious disease [Chhatwal, 2015]. The Authors modelled the transmission of an 
infectious disease which progressed among an isolated population (Figure 
4.11).

Susceptible State A

State B

State C

DRD

State of infected individuals

ScreenTreatment

Transmission

Figure 4.11. Illustrative representation of the transmission and progression of 
disease in the agent-based model. Modified from [Chhatwal, 2015].

DRD = Disease-Related Death

Efficacy evidence for the new antineoplastic intervention, compared with 
standard of care, comes from a well-designed Randomized Clinical Trial 
(RCT) in terms of increasing in the time to remission and overall survival 
(Figure 4.9).

The simplified structure of the model is illustrated in Figure 4.9.

4.8 Agent-Based Models

In an individual or Agent-Based (AB) model the status of each individual is 
explicitly tracked over time. In this case, individuals are discrete entities who 
do not move between compartments, but rather change their internal state 
(e.g., susceptible, infected) on the ground of their interactions. Furthermore, 
AB models can incorporate population heterogeneity quite easily. Finally, 
they are flexible enough to assess complex interventions.

Individuals evolving in an AB model are called “agents”. An agent is defined 
by the following characteristics [Niazi, 2011]:

 • Activity: Each agent independently acts following the rules assigned in 
the simulation and its own pre-programmed behavior. Agents may in-
teract or exchange information with other agents; these interactions 
may have particular effects on the agent, including its destruction or 
change in goal-seeking behavior;

 • Autonomy: Each agent can make independent decisions in accordance 
with rules assigned in the simulation;

 • Heterogeneity: Generally, each agent is created as a member of a limited 
set of common templates, but it develops individuality through interac-
tions.

Stage for agents’ behaviors is called “environment”. Environment may 
change dynamically according to the actions of the agents, but these changes 
occur passively, rather than in the active fashion of agent evolution in time. 
The state of the environment evolves dynamically, but only in response to 
the actions of the agents; in sum, agents are active while the environment is 
passive.

Agent-based modeling allows to incorporate and evaluate complex be-
haviors and interactions and, as such, permits to effectively model com-
plex phenomena [Miller, 2007]. Global system evolution is not modeled a 
priori, but depends on a “few” rules that are assigned to each agent (Figure 
4.10).

+ =

What do you 
do by yourself

How to behave
when meeting

???

Global system
behavior

Figure 4.10. Illustrative representation of an AB model: Rules of conduct of a 
single agent when alone and when interacting with other agents that are assigned 
a priori (but may change due to interaction or learning). The global behavior of the 
whole population (framed network with dots corresponding to agents) naturally 
arises without external constraints.
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The agents were defined as people who can be susceptible, infected, or at 
the chronic stage. In each cycle, an infected person could come into contact 
with several susceptible persons in his/her radius and could probabilistically 
transmit disease to them (State A). In contrast to a Markov model, agents in 
the AB model change their attributes on the basis of their interactions with 
other agents. The infected agents, if screened and treated, can be cured and 
move to a susceptible state with a possibility of reinfection. Untreated in-
fected agents can progress to advanced stages of disease (State B and C) and, 
eventually, experience a Disease-Related Death (DRD).

Results of the case study comparing the cost-effectiveness of the screening 
program versus no-screening scenario are reported in Table 4.8 for different 
values of infection radius.

4.9 Conclusions

During the process of converting the problem conceptualization into an ap-
propriate model structure, several model types may be suitable (Table 4.9). 
However, some problems are more naturally represented in some types than 
others [Roberts, 2012].

Decision trees are useful for problems with short time horizons where the 
estimation of outcomes is straight-forward. Markov models or quasi-Markov 
models are useful for problems with longer time frame or when probabilities 
vary over time. DES and more sophisticated DICE models are useful for rep-

Infection 
radius

Screening
Cost per 
patient 

($)
QALYs

Delta 
cost ($)

Delta 
QALYs

ICER 
 ($/QALY)

DRDs 
averted

Infections 
averted

Small
No 966 25.20

Yes 1,438 25.20 472 0.01 60,504 0.08% 0.02%

Medium
No 2,209 25.08

Yes 2,824 25.10 614 0.02 29,258 0.18% 0.18%

Large
No 12,044 24.33

Yes 14,145 24.43 2,101 0.09 23,084 0.94% 1.46%

Table 4.8. Results of the case study comparing the cost-effectiveness of the 
screening program versus no-screening scenario for different values of infection 
radius.

DRD = Disease-Related Death; ICER = Incremental Cost-Effectiveness Ratio;  
QALY = Quality-Adjusted Life-Year
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resenting individual behavior under certain constraints or events that could 
change patients’ pathway. AB models are suitable for model interaction be-
tween subjects and their impact on the results.

The model types presented in this chapter are not exhaustive and some 
healthcare problems are not easily represented with these commonly used 
techniques. Combinations of models or hybrid models (e.g., decision tree to 
simulate acute phase followed by Markov model in the chronic phase) could 
be more appropriate. Furthermore, model simplicity is desirable for trans-
parency, validation, and description. However, the model must be complex 
enough to incorporate all aspects clinical experts feel are required.

Decision 
trees

Markov 
models

State 
transition 

models
PSM DES

DICE 
simulation

AB models

Patients 
simulated as

Cohort Cohort Each 
patient 

individually

Cohort Each 
patient 

individually

Each 
patient 

individually

Each 
patient 

individually

Time horizon Short Long Long Long Long Long Long

Interaction 
between 
individuals

No No Yes No Yes Yes Yes

Interaction 
between 
patients and 
environment 
(e.g., resource 
constraints)

No No No No Yes Yes Yes

Software TreeAge, 
MS Excel

TreeAge, 
MS Excel

TreeAge, 
MS Excel

TreeAge, 
MS Excel

MS Excel, 
specific 

software

Specific 
software

Specific 
software

Table 4.9. Comparison between the main simulation models.

AB = Agent-Based; DES = Discrete-Event Simulation; DICE = Discretely Integrated 
Condition Event; PSM = Partitioned Survival Model
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Questions

1. Tick the correct sentence
A. Patient-level simulation is easier to develop and faster in computation 

than cohort model
B. In cohort model only mean results can be calculated
C. Cohort model can mimic disease progression
D. Microsimulation has no memory of previous events

2. Tick all that apply to microsimulation
A. Each patient is created with a proper set of characteristics
B. The experience of each patient is not considered in detail
C. The process is replicated for a suitable number of iterations
D. Can use empirical data or statistical distributions of individual subjects’ 

baseline characteristics

3. Tick all that apply to decision analysis
A. The first step is model conceptualization
B. The decision tree is made by nodes and branches
C. Further information is used to fill the decision tree
D. Four steps are involved in the decision analysis

4. Which is the right order of the step forming the decision analysis?
A. Problem conceptualization; model conceptualization; model parameter 

estimation; run the model and interpretation; sensitivity analysis, trans-
parency, and validation

B. Model conceptualization; model parameter estimation; problem con-
ceptualization; run the model and interpretation; sensitivity analysis, 
transparency, and validation

C. Problem conceptualization; model conceptualization; sensitivity analy-
sis, transparency, and validation; model parameter estimation; run the 
model and interpretation

D. Sensitivity analysis, transparency, and validation; problem conceptual-
ization; model conceptualization; model parameter estimation; run the 
model and interpretation 
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5.	 In	influence	diagrams	
A. Decision elements are represented as squares
B. Chance elements are represented as squares
C. Outcomes are represented as squares
D. Individuals are represented as squares

6. Tick all that apply to Markov models
A. May be used in case of diseases gradually progressing over years
B. Markov diagrams are similar to influence diagrams
C. In each cycle, every individual must be in one state
D. Individuals can exit the dead state

7. In Markov models, when do transitions between the states occur?
A. Only in case of death
B. No transitions occur in Markov models
C. In the middle of each cycle
D. At the end of each cycle

8. Key points in discrete-event simulation are
A. Cycles, transitions, and periods
B. Entities, events, and time
C. Entities, events, and conditions
D. Cycles, transitions, and states

9. Tick all that apply to discrete-event simulations
A. The operation of a system is represented as a chronological sequence of 

events
B. It was originally developed in the field of veterinary medicine
C. Each event occurs at an instant in time
D. Each event marks a change of state in the system

10. DICE stands for
A. Different Iterations Condition Event
B. Discretely Integrated Condition Event
C. The plural of die, as the name of the technique reminds the randomness 

of the possible conditions a patient can be in
D. Different Integrated Condition Event
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11. In the DICE model
A. Every condition is allowed to assume just one level
B. The disease evolution and its management are conceptualized in terms 

of the conditions that patients can be in, integrated with the events they 
can experience

C. All the conditions associated with patients vary over time
D. Events do not interact with conditions

12. Tick all that apply to agents in agent-based models
A. Agents are individuals
B. Agents are events
C. Agents have the following characteristics: entities, events, and time
D. Agents have the following characteristics: activity, autonomy, and het-

erogeneity

13. Tick all that apply to agent-based models
A. The status of each individual is explicitly tracked over time
B. Individuals are discrete entities who move between compartments
C. Individuals change their internal state based on their interactions
D. Stage for agents’ behaviors is called “cycle”

Answers

1. B
2. A, C, D
3. B, C 
4. A 
5. A
6. A, B, C
7. D
8. B
9. A, C, D
10. B
11. B
12. A, D
13. A, C
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